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ABSTRACT 

The potential for changes in extreme precipitation events due to anthropogenic 

climate change may have significant societal impacts (e.g., agricultural productivity, property 

loss, mortality). This project uses a dynamically downscaled, convection-permitting regional 

climate model to investigate extreme daily precipitation in the CONUS, defined explicitly as 

the 99th percentile 24-h accumulated value. The simulation output includes a historical 

baseline (HIST; 1990–2005) and two epochs at the end of the twenty-first century (EOC; 

2085–2100) under intermediate and pessimistic emissions scenarios. Independent 

observations illustrate that HIST admirably represents extreme precipitation climatology for 

most locations in the domain. Comparisons between HIST and the two EOC scenarios for the 

99th percentile of daily precipitation show statistically significant increases during Dec–May 

across the Midwest and Ohio Valley and statistically significant decreases for the southern 

Great Plains during Dec–Feb. Extreme value analysis further reveals increasing variability in 

precipitation extremes for eight climatologically unique cities across the CONUS by the end 

of the twenty-first century and significant increases in return period precipitation amounts for 

most cities examined. These results provide additional guidance for stakeholders to reduce 

societal impacts and economic loss from daily precipitation extremes and create a more 

climate-resilient society. 

SIGNIFICANCE STATEMENT 

This study uses a novel convection-allowing regional climate model to illustrate potential 

future changes in daily extreme rainfall amounts due to climate change. Future scenarios 

project robust increases in these events during some seasons for portions of the Midwest and 

Ohio Valley, whereas the southern Great Plains are projected to experience decreases. 

Furthermore, we find a notable increase in the variability of extreme daily precipitation 

across various CONUS cities by the end of the twenty-first century. Overall, our results 

further our understanding of how extreme precipitation events may change in the future and, 

therefore, help policy makers and stakeholders adapt to these impactful events. 

1. Introduction

The impacts of anthropogenic climate change will be felt most strongly through changes

in the intensity and frequency of hazards such as extreme precipitation and resulting floods. 

Floods are the second deadliest weather-related hazard in the United States, falling just 
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behind heat, causing an average of 80–100 flood deaths per year (Ashley and Ashley 2008a, 

b; Villarini and Slater 2017; Zhou et al. 2018; Lim and Skidmore 2019; Han and Sharif 

2021). The United States recorded 40 separate flood disasters from 1980–2022 (excluding 

inland flood damage caused by tropical cyclones), each resulting in at least $1 billion in 

consumer price index (CPI) adjusted losses (NCEI 2023). Those billion-dollar flood disasters, 

on average, produced $4.3 billion in monetary loss (CPI-adjusted) and are comparable to 

other studies showing average annual losses in the $4–9 billion range (Villarini and Slater 

2017; Zhou et al. 2018; National Academies of Sciences, Engineering, and Medicine 2019; 

NCEI 2023). As of 2011, the observed increase in economic losses had not been directly 

related to anthropogenic climate change, but rather largely attributed to socioeconomic 

factors such as increasing exposure and the “expanding bull’s-eye effect” (Bouwer 2011; 

Ashley et al. 2014; Strader and Ashley 2015). Therefore, there is still an increasing risk of 

flooding and losses with increasing vulnerability due to projected land use and exposure 

changes (Strader and Ashley 2015; Ferguson and Ashley 2017; Andreadis et al. 2022; Rashid 

et al. 2023).  

Overall and extreme precipitation has been increasing globally over the past several 

decades (e.g., Dai et al. 2004; Groisman et al. 2005; Alexander et al. 2006; Min et al. 2011; 

O’Gorman 2012; Westra et al. 2013; Papalexiou and Montanari 2019). More than 50% of 

global stations showed increasing precipitation trends, and the midlatitudes, in particular, 

have experienced an increased frequency of extreme precipitation events and a tendency for 

wetter conditions (Groisman et al. 2005; Alexander et al. 2006; Min et al. 2011; Westra et al. 

2013; Papalexiou and Montanari 2019). In the CONUS, there has been a statistically 

significant upward trend in precipitation over the last ~100 years, especially in the Midwest, 

Southeast, and Northeast (e.g., Groisman et al. 2005; Alexander et al. 2006; Groisman et al. 

2012; Kunkel et al. 2013a; Janssen et al. 2014; Huang et al. 2017; Changnon and Gensini 

2019; Fowler et al. 2021). For many regions, droughts have become shorter in duration, less 

frequent, and less spatially expansive, except in the Southwest and interior West; however, 

drying could expand into the low- and mid-latitudes as higher greenhouse gas concentrations 

increase temperatures and alter sensible and latent heat fluxes (Trenberth et al. 2003; Dai et 

al. 2004; Mishra and Singh 2010; Dai 2011; Trenberth 2011; Trenberth et al. 2014; Zhang et 

al. 2021). These studies show a tendency for more extreme conditions in many regions of the 

CONUS, yet the historical changes are relatively small in comparison to late-twenty-first-

century projections. 
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The atmospheric response of extreme precipitation to anthropogenic climate change has 

been researched extensively (e.g., Meehl et al. 2005; Kharin et al. 2007; Allan and Soden 

2008; O’Gorman and Schneider 2009; Sugiyama et al. 2010; Pan et al. 2011; Dominquez et 

al. 2012; Zhu et al. 2013; Janssen et al. 2014; Prein et al. 2017; Huang and Stevenson 2021; 

Picard et al. 2023). By using emission scenarios—such as representative concentration 

pathways (RCPs)—one can apply a storyline approach and extensively examine future 

projections of the atmospheric state and, thus, create climatologies for future scenarios (e.g., 

Kharin et al. 2007; Kunkel et al. 2013b; Janssen et al. 2014; Hazeleger et al. 2015; Prein et al. 

2017; Shepard et al. 2018; Li et al. 2022; Quintero et al. 2022; Gensini et al. 2023; Rashid et 

al. 2023). For example, North America could experience an increase in mesoscale convective 

system (MCS) frequency and a 15–40% increase in maximum precipitation rates due to a 

deeper layer permitting more collision and coalescence (Pan et al. 2011; Trenberth 2011; 

Prein et al. 2017; Haberlie et al. 2023). Spatiotemporal changes in MCSs can have significant 

socioeconomic impacts since a large proportion of annual precipitation accumulation stems 

from these events (e.g., Ashley et al. 2003; Schumacher and Johnson 2006; Stevenson and 

Schumacher 2014; Feng et al. 2016; Prein et al. 2017; Haberlie and Ashley 2019). 

Highlighting the potential changes in future extreme precipitation can inform stakeholders so 

that they may develop effective mitigation and adaptation strategies to reduce impacts.   

Adequate horizontal grid spacing of a regional climate model (RCM) is necessary to 

interpret projected changes in mesoscale processes, such as convective precipitation not well 

resolved by the relatively coarse horizontal grid spacing of general circulation models 

(GCM). The process of dynamical downscaling (e.g., Prein et al. 2015) is often employed 

where a RCM is forced by GCM output to both implicitly and explicitly examine hazardous 

convective weather, such as extreme precipitation, at a convection-allowing scale (e.g., Trapp 

et al. 2011; Robinson et al. 2013; Gensini and Mote 2014; Tippet et al. 2015; Hoogewind et 

al. 2017; Trapp et al. 2019; Haberlie et al. 2022; Ashley et al. 2023; Gensini et al. 2023). 

RCM simulations at this scale typically show only a single outcome, which makes reaching 

definitive conclusions challenging unless other experiments (i.e., an ensemble approach) are 

generated to better discern uncertainty (Gensini et al. 2023). An ensemble approach, 

however, is challenging to execute due to computational limitations and considerable time 

expenditure for high-resolution RCM simulations, a limitation that has, until recently, 

permitted only a few simulations of substantial duration at convection-allowing scales.  
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Here, we use a novel dynamically downscaled convection-permitting simulations to 

examine projected changes in extreme daily precipitation throughout the CONUS during the 

twenty-first century. The model used herein allows for representation of regional climate 

change of precipitation extremes closer to the local scales at which they occur (e.g., < 4 km 

horizontal grid spacing), which is of great interest to stakeholders. Section 2 describes the 

datasets and methodology used in this study. Results are presented in section 3, with a 

spatiotemporal analysis of extreme daily precipitation followed by an extreme value analysis 

(EVA). Finally, a discussion and concluding remarks follow in section 4. 

2. Data and methodology

a. RCM output

Our RCM simulations were conducted with the Weather Research and Forecasting Model

(WRF-ARW version 4.1.2; Skamarock et al. 2019) configured with a horizontal grid spacing 

of 3.75 km and 51 vertical levels across the CONUS. WRF-ARW is a fully compressible 

nonhydrostatic model widely used in both operational forecasting and research (Skamarock 

and Klemp 2008; Powers et al. 2017). Small horizontal grid spacing (i.e., ≤ 4 km) permits the 

removal of a convective parameterization scheme, allowing the explicit development of all 

modes of deep, moist convection (Weisman et al. 1997; Skamarock and Klemp 2008; Westra 

et al. 2014). Initial and lateral boundary conditions input into the RCM stemmed from the 

Community Earth System Model (CESM; Hurrell et al. 2013) GCM output, a participant in 

phase 5 of the Coupled Model Intercomparison Project (CMIP5; Taylor et al. 2012). We used 

a version of these data from Bruyère et al. (2014) that performed an additional regrid and 

bias-correction using 1981–2005 ERA-Interim reanalysis (Dee et al. 2011). Spectral nudging 

was used at 6-h intervals to large-scale (3x; 2y) features for T (temperature), q (specific 

humidity), u (zonal wind speed), v (meridional wind speed), and Φ (geopotential) above the 

planetary boundary layer. The complete RCM design and configuration is detailed in Gensini 

et al. (2023).  

RCM simulations were continuously integrated over a hydrologic year (1 October–30 

September), with reinitialization each October 1. Simulated time periods include three 15-

year epochs, with a historical baseline (HIST; 1990–2005) and two future epochs (EOC; 

2085–2100) using RCP4.5 (EOC4.5) and RCP8.5 (EOC8.5) future climate scenarios (Moss et 
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al. 2010). These RCPs—used in the Intergovernmental Panel on Climate Change (IPCC) fifth 

assessment report (AR5; IPCC 2014)—permit the investigation of the atmospheric reaction to 

different plausible future climates with differing levels of radiative forcings from changes in 

greenhouse gasses (Moss et al. 2010). RCP4.5 represents a moderate future climate scenario 

with stabilization of radiative forcing and greenhouse gas concentrations without overshoot 

by 2100, while RCP8.5 represents a scenario with a significant level of radiative forcing 

(nearly double the RCP4.5), falling within the 90th percentile of the reference emissions 

range for energy and industry carbon dioxide emissions (Moss et al. 2010). While now 

considered to be highly improbable, RCP8.5 is widely used since changes are most evident in 

this scenario (i.e., the signal-to-noise ratio is maximized) and provides a mode of comparison 

with both previous studies and for RCP4.5 used herein. 

Daily precipitation amounts analyzed herein are derived from the Air Force Weather 

Agency (AFWA; Creighton et al. 2014) total simulation precipitation accumulation variable 

archived at 15-minute output intervals (in mm). The AFWA total precipitation variable is 

based on accumulation since the simulation start (Creighton et al. 2014). Daily precipitation 

(1200–1200 UTC) climatologies are then aggregated from the HIST, EOC4.5, and EOC8.5 

15-minute sub-daily AFWA total precipitation data.

b. PRISM

To compare HIST daily extreme precipitation to observations, we use the Parameter-

elevation Regressions in Independent Slopes Model (PRISM; Daly et al. 1994). PRISM data 

encompasses the CONUS with horizontal grid spacing of 4 km. Data are daily (1200–1200 

UTC) and generated from a digital elevation model, station data (including federal, state, and 

local weather networks), and radar precipitation estimates (where available) to produce 

gridded daily precipitation estimates (Daly et al. 1994). PRISM is not ground truth per se; 

rather, it serves as a tool to assess the similarity between the simulated HIST and a dataset 

established using observations in its creation. PRISM does have disadvantages, such as 

limited station density and temporal inconsistencies in some regions (Daly et al. 2021); 

however, advantages include relatively high-resolution, quality-controlled data that are more 

useful in mountainous regions compared to station data alone as the process considers 

physiographic features (e.g., coastline proximity, topographic indices, location) to better 

represent areas with complexities such as precipitation shadows and temperature inversions 

(Daly et al. 2008; Daly et al. 2021). 
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PRISM data from 1 October 1990–30 September 2005 (i.e., the HIST climate simulation 

period) was bilinearly regridded to match the WRF-ARW lambert conformal projection and 

horizontal grid spacing of 3.75 km for comparison. The time series was aggregated into 

seasonal and annual climatologies to assess the HIST epoch performance since a one-to-one 

event comparison cannot be implemented due to the HIST epoch driven by a free-running 

GCM using historical initial conditions. To determine any error in the WRF historical 

baseline, we compared the HIST and PRISM output using Pearson’s correlation coefficient 

(r), root mean square error (RMSE), and p-value (95% confidence level) from a Mann–

Whitney U test for the medians using a field significance false discovery rate of =0.1. 

Additionally, we chose eight climatologically unique CONUS cities for further analysis 

following Gensini et al. (2023): Albany, New York; Amarillo, Texas; Grand Junction, 

Colorado; Minneapolis, Minnesota; Nashville, Tennessee; Phoenix, Arizona; Seattle, 

Washington; and Tallahassee, Florida. These cities are within eight of the nine NCEI climate 

regions and six of the seven National Climate Assessment (NCA) CONUS regions (Karl and 

Kloss 1984; Wuebbles et al. 2017), thus representing a selection of climatologically diverse 

areas. Additionally, cities represent higher socioeconomic risk due to increased population 

density and vulnerabilities associated with urban infrastructure (e.g., Lee et al. 2016, Zhou et 

al. 2019). 

c. Defining extreme precipitation

Extreme precipitation changes over relatively short intervals are particularly important

due to their potential societal impacts, and given the many options, it was important to choose 

the optimal definition that can be directly compared to previous research and ensure 

relevance to those impacts. Annual extreme events can be used to determine the probability 

of 100-year return period precipitation values, which can then inform infrastructure design 

and mitigation efforts (Min et al. 2011; Wright et al. 2021). The leading definition for 

extreme precipitation over time interval N uses percentiles, especially above the 95th (e.g., 

Groisman et al. 2005; Sillmann and Roeckner 2008; O’Gorman 2012; Agel et al. 2015; 

Armal et al. 2018; Howarth et al. 2019). Some studies have used multiple thresholds of 

percentiles to show changes in various parts of the probability density function (e.g., 

Groisman et al. 2005; Alexander et al. 2006; Allan and Soden 2008; Loiraux et al. 2013; 

Huang and Stevenson 2021). Here, we define extreme daily precipitation to be the 99th 

percentile of daily precipitation over the entire epoch time series. 24-h all-day percentiles are 
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used over wet-day percentiles, as the latter can produce misleading results due to high 

sensitivity to the fraction of wet days and precipitation accumulations of a day or longer are 

relevant for areal flooding (e.g., Lenderink and van Meijgaard 2008; O’Gorman and 

Schneider 2009; Min et al. 2011; Chan et al. 2014; Agel et al. 2015; Schär et al. 2016; Armal 

et al. 2018; Changnon and Gensini 2019).  

d. Extreme Value Analysis (EVA)

Extreme value theory (EVT; Gumbel 1958) characterizes the frequency and intensity of

extremes (e.g., Friederichs 2010; Min et al. 2011; Kunkel et al. 2013a; Westra et al. 2013; 

Agel et al. 2015; Kumar et al. 2015; Tabari 2021; Gensini et al. 2023). EVT is useful since 

extremes would stay constant in a stationary climate, but revealing a trend indicates 

attribution to nonstationary forcing, such as anthropogenic climate change. Here, we 

implement univariate EVA using the Fisher-Tippett-Gnedenko (Fisher and Tippett 1928; 

Gnedenko 1943) theorem with the daily precipitation time series for the PRISM, HIST, 

EOC4.5, and EOC8.5 epochs and performed the analysis with the Python package 

pyextremes (https://georgebv.github.io/pyextremes/) inspired by Coles (2001). 

The generalized extreme value approach has two methods for analysis: block maxima 

(BM) and peak over threshold (POT). With a block size of one year, the BM method takes 

the maximum value from each year, making the sample size equal to the number of years. 

The POT method permits a larger sample size by extracting events based on a selected 

critical value but is highly dependent on the critical threshold value chosen and can result in 

misleading conclusions (Friederichs 2010; Tabari 2021). In comparing BM and POT methods 

for climate change impacts on global flood and extreme precipitation events, Tabari (2021) 

found the difference in magnitude between the methods to be statistically significant for 

longer return intervals; spatially, these methods displayed inconsistency in the tropics and 

subtropics, yet high consistency in the Northern Hemisphere extratropics. Here, we use the 

BM technique since it creates a more stable model, whereas POT is highly dependent on the 

threshold chosen and clustering distance, making the model more sensitive. To avoid 

capturing seasonality, we chose a BM block size of one year and extracted values for the 

model based on the maximum 24-h precipitation value for each hydrologic year (totaling 15 

values for each epoch).  

Extracted extremes were fit to a maximum likelihood estimate model and a right-skewed 

Gumbel distribution. The right-skewed Gumbel distribution was selected using model metrics 
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of Akaike Information Criterion (AIC), log-likelihood, location, and scale to compare the 

right-skewed Gumbel and generalized extreme distribution fits on the extracted time series. 

AIC uses log-likelihood in the calculation and evaluates how accurately the modeled EVA 

data fits the original WRF input to compare the relative goodness-of-fit; a lower score 

indicates better modeled data. The AIC for all epochs in each city showed that the right-

skewed Gumbel distribution had lower scores than the generalized extreme value distribution, 

except for the HIST and EOC8.5 epochs for Seattle, WA (Fig. 3 in Stinnett 2023).  

Quantile-Quantile (Q-Q) plots for the cities have the same x and y-axis scale to compare 

the modeled EVA and input WRF data to establish the accuracy of the modeled data, which 

is linear on a 1:1 trend line when the modeled EVA data reasonably describes the original 

input WRF data input. Model statistics such as Pearson’s r, RMSE, p-value, and coefficient 

of determination (R2) were used to rate model performance. R2 demonstrates how well the 

modeled EVA values match the WRF input by explaining the variance from the input WRF 

data and is the better model reliability metric. This metric contrasts Pearson’s r which 

evaluates only the distribution pattern but helps compare the historical baseline with 

independent observations since it is not a one-to-one comparison like used in the EVA. 

Probability density functions (PDFs) were calculated for all four epochs (PRISM, HIST, 

EOC4.5, and EOC8.5). These PDFs are of the modeled extremes, not the entire epoch time 

series, where each point has a value and associated probability to further identify variability 

within the epochs. 

The probability of exceedance (P) is the probability of a value with a specific rank being 

exceeded within the given time period. P is calculated using the equation:  

𝑃 =
𝑟 − 𝛼

𝑛 + 1 − 𝛼 − 𝛽

where r is the rank of the extreme value, n is the number of extreme values, and  and  are 

empirical plotting parameters. EVA utilizes the Weibull plotting position where =0 and 

β=0. For the extracted data used here, rank values are from 1–15 where the most extreme 

value has a rank of 1 and the annual exceedance probability is 1/16 or 0.0625.  

The return period (R; Makkonen 2006) relates to the likelihood of a precipitation value 

occurring within any given year. R is calculated following: 

𝑅 =
1

𝑃𝜆
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where P is the annual probability of exceedance (i.e., 1% for a 100-year event) and  is the 

rate of extreme events per block which equals 1 with a return period and block size of one 

year. We used a 1,000-iteration bootstrap sample to calculate the 95% confidence interval of 

the 2–500-year return periods. Statistical significance was determined where the median EOC 

epoch return period precipitation value was outside the 95% confidence interval from the 

1000-iteration bootstrap sample for the HIST. A wider confidence interval signifies higher 

uncertainty, partly due to a limited amount of input data, which is a limitation in the return 

period calculations for these datasets. 

The spatial plots of the 100-year return periods of daily precipitation values for the 

eight climatologically unique cities were spatially aggregated to 30 km from the native 3.75 

km horizontal grid spacing using both a spatial mean and a spatial maximum to account for 

spatial uncertainty. The HIST 30 km mean return period daily precipitation values were 

closest to NOAA ATLAS 14 series (e.g., Vol. 9; Perica et al. 2013 and Vol. 10; Perica et al. 

2015, revised 2019), PRISM, and the native grid spacing data compared to the HIST 30 km 

max (not shown). Therefore, we continued to use the 30 km mean value in the spatial analysis 

of the EOC4.5 and EOC8.5 100-year return interval to reduce computational expense.  

3. Results

a. Comparison of HIST to PRISM

Despite a few regional and seasonal biases, HIST daily mean and extreme precipitation

compared favorably to PRISM. Pearson’s r correlation for average annual precipitation 

between PRISM and HIST was found to be 0.89 herein and 0.91 in Gensini et al. (2023), 

while the RMSE was found to be 214.6 mm herein and 210 mm in Gensini et al. (2023) 

(Table 1). These differences between the current study and Gensini et al. (2023) are likely 

associated with differing regridding and spatial clipping techniques used on the time series 

domain. The annual 99th percentiles of PRISM and HIST were also highly correlated with a 

Pearson’s r correlation of 0.89, p ≈ 0, and RMSE = 7.8 mm (Fig. 1a–d and Table 1). 

Pearson’s r correlation between PRISM and HIST minimally dropped for the 99th percentile 

seasonally (Dec–Feb = 0.89; Mar–May = 0.87; Jun–Aug = 0.88; Sep–Nov = 0.84) compared 

to seasonal mean precipitation (Table 1). These model metrics illustrate that HIST admirably 

represented the mean and 99th percentile of daily precipitation annually and seasonally 

compared to PRISM. 
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Fig. 1. 99th percentile of daily precipitation (mm) for 1990–2005 HIST (a, e, i, m, q) and 

PRISM (b, f, j, n, r), and the raw (c, g, k, o, s) and percent differences (d, h, l, p, t) between 

them for annual (first row), Dec–Feb (second row), Mar–May (third row), Jun–Aug (fourth 

row), and Sep–Nov (fifth row). Root mean square error values for each row are shown in 

Table 1. Hatched areas in the fourth column indicate where a Mann–Whitney U test 

determined statistically significant differences (p < 0.05) between the epochs with a field 

significance false discovery rate of =0.1.  

Mean Precipitation 

Annual DJF MAM JJA SON 

r 0.89 0.91 0.87 0.90 0.84 

p 0.0 0.0 0.0 0.0 0.0 

RMSE 214.6 87.3 58.4 77.9 68.9 

Daily 99th Percentile 

Annual DJF MAM JJA SON 

r 0.89 0.89 0.87 0.88 0.84 

p 0.0 0.0 0.0 0.0 0.0 

RMSE 7.8 12.3 7.9 9.2 8.9 
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Table 1. Comparison of 1990–2005 PRISM and HIST mean and daily 99th percentile 

precipitation. 

Regarding regional biases, the HIST annual 99th percentile of daily precipitation was 

significantly wetter for a large area of the Intermountain West and smaller areas in the 

southern Great Plains and Midwest, while significantly drier areas were mainly confined to 

the Northeast (Fig. 1d). On a seasonal basis, there were differences in the magnitude of the 

99th percentile of daily precipitation for various regions with raw differences primarily 

within 20 mm; each season had an RMSE of 12.3 (Dec–Feb), 7.9 (Mar–May), 9.2 (Jun–Aug), 

and 8.9 (Sep–Nov) mm. Differences between HIST and PRISM displayed a statistically 

significant (p < 0.05) wet bias in regions of Intermountain West during Sept–Feb and in the 

northern Great Plains and Midwest during Dec–Feb (Fig. 1h, t). Some of these regions 

coincided with less than 10 mm raw differences—especially in the northern Great Plains—

but made for large percent (e.g., +150%) differences due to relatively small denominators. 

Similarly, the statistically significant HIST dry bias in the western CONUS for Jun–Aug (Fig. 

1p) also showed small absolute differences and large negative percent differences (i.e., HIST 

underestimated precipitation). As suggested in Gensini et al. (2023), this dry bias could be 

partly related to the North American Monsoon season, which peaks in the warm season for 

the Southwest (Adams and Comrie 1997). The Sep–Nov statistically significant dry bias in 

the Southeast and along the Atlantic coast may be attributed to poor model representation of 

tropical cyclone precipitation due to limited model domain extent over the Gulf of Mexico 

and Atlantic Ocean (Figs. 1s, t). It is important to note that caution should be used when 

interpreting PRISM as ground truth during analysis since it has limitations, especially in 

regions with limited station density and radar coverage. 

b. Future changes in percentiles

We compared HIST to potential future climate scenarios (EOC; 2085–2100) using

RCP4.5 (EOC4.5) and RCP8.5 (EOC8.5) to assess future changes in extreme precipitation. In 

HIST, the daily 99th percentile precipitation values were generally less than 80 mm for most 

CONUS locations. A pattern emerged in both EOC scenarios across seasons, which showed 

the highest magnitude changes in the 99th percentile of daily precipitation were increases in 

the Cascade Mountains and Ohio River Valley and decreases in the Southwest and southern 

Great Plains (Figs. 2, 3, 4, 5). These changes align with previous research examining 

historical and potential future changes for percentiles in these regions of the CONUS (e.g., 
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Groisman et al. 2005; Alexander et al. 2006; Kunkel et al. 2013a; Janssen et al. 2014; Huang 

et al. 2017; Fowler et al. 2021; Huang and Stevenson 2021). Part of the projected increases in 

annual precipitation (Gensini et al. 2023) could be explained by an increase in the 99th 

percentile values in the future, which indicates an increasing probability of extreme 

precipitation (i.e., exceeding the HIST 99th percentile) by the end of the twenty-first century 

in both EOC scenarios.

Fig 2. Dec–Feb 99th percentile of daily precipitation (mm) for 1990–2005 HIST (a), with 

raw (b, c) and percent (d, e) differences from HIST for 2085–2100 EOC4.5 and EOC8.5 
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epochs. Hatched areas on percent difference panels (third row) indicate regions where a 

Mann–Whitney U test determined statistically significant differences (p < 0.05) between the 

epochs with a field significance false discovery rate of =0.1. 

Fig. 3. As in Fig. 2, except for Mar–May. 
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Fig. 4. As in Fig. 2, except for Jun–Aug. 
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Fig. 5. As in Fig. 2, except for Sep–Nov. 

1) WESTERN CONUS

Implementing a seasonal analysis of the 99th percentile of daily precipitation permits the

identification of specific spatiotemporal changes through the end of the twenty-first century. 

Results reveal the largest areas of statistically significant decreases in the 99th percentile of 

daily precipitation were in EOC8.5 in the Southwest (Mar–May; Fig. 3e) and Intermountain 

West (Jun–Aug; Fig. 4e). Most of these areas of decrease in the 99th percentile of daily 
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precipitation are consistent with statistically significant decreases in mean seasonal 

precipitation in EOC8.5 as compared to HIST (Gensini et al. 2023). Many decreases in the 

99th percentile of daily precipitation had large negative percent differences of 50–150% in 

the Southwest and Intermountain West, consistent with the recent drought trends in these 

regions and previous work projecting increasing aridity through the end of the twenty-first 

century (e.g., Mishra and Singh 2010; Dai 2011; Naumann et al. 2018; Cook et al. 2020; 

Ukkola et al. 2020). Therefore, changes in extreme precipitation in these regions will have 

large implications for regional hydroclimate stability and water scarcity in these 

climatologically arid regions. 

Smaller, more sporadic regions of the northern Intermountain West displayed statistically 

significant increases of the 99th percentile of daily precipitation for both EOC scenarios in 

Dec–Feb (Fig. 2d, e), and EOC8.5 mean seasonal precipitation during Dec–May showed 

statistically significant increases in the Pacific Northwest (Gensini et al. 2023). Assuming the 

0°C isotherm remains low in elevation, the differences between the EOC scenarios and HIST 

could imply an increased ceiling for snowpack in mountainous areas of the western CONUS, 

especially in the Pacific Northwest. However, Gensini et al. (2023) show temperature 

increases of approximately 2–7°C in areas of the Intermountain West during Dec–Feb 

EOC8.5 compared to HIST, while Mar–May exhibit less than 2°C of warming for most 

regions of the Intermountain West. Thus, the potential change of a smaller fraction of 

precipitation falling as snow could lead to an increased flood risk during winter and spring 

and water scarcity in summer due to decreased snowpack (Pan et al. 2011; Trenberth 2011; Li 

et al. 2022; Asif et al. 2023). These results agree with previous simulations encompassing the 

western CONUS projecting precipitation increases, most notably in the Pacific Northwest, by 

the end of the twenty-first century (e.g., Pan et al. 2011; Dominguez et al. 2012; Huang and 

Stevenson 2021). 

2) EASTERN CONUS

The eastern CONUS (i.e., regions east of the Rocky Mountains) showed the highest 99th

percentile of daily precipitation in the Midwest and Southeast in all seasons (Figs. 2, 3, 4, 5). 

Mean seasonal precipitation in the southern Great Plains in Dec–Feb showed statistically 

significant decreases in EOC8.5 compared to HIST (Gensini et al. 2023). Similarly, the 99th 

percentile of daily precipitation displayed areas of statistically significant decreases in the 

southern Great Plains during Dec–Feb (EOC4.5 and EOC8.5; Fig. 2d, e) and Mar–May 
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(EOC8.5; Fig. 3e). No widespread statistically significant changes were seen for EOC4.5 in 

Mar–Nov (Figs. 3d, 4d, and 5d), but raw differences showed widespread decreases in the 

Great Plains, Midwest, and Mid-South for Jun–Aug in both EOC scenarios (Fig. 4b, c). 

The climatological peak for tropical cyclones—one source of extreme precipitation—

occurs during Sept–Nov, with 70% and 58% of extreme precipitation events resulting from 

tropical cyclones in September and October, respectively, during the period 2002–2011 (e.g., 

Kunkel et al. 2012; Stevenson and Schumacher 2014; Moore et al. 2015). Our simulations 

showed large areas of decrease in the Southeast and Atlantic Coast during Sep–Nov in 

EOC4.5 and EOC8.5 (Fig. 5b, c) but small areas of statistical significance (Fig. 5d, e). These 

projected changes could be due to decreased tropical cyclone frequency and related 

precipitation. However, since the HIST showed a statistically significant dry bias for those 

regions during Sep–Nov (Fig. 1t), extreme precipitation caused by tropical cyclones may be 

underestimated in the HIST and EOC simulations. 

EOC8.5 seasonal mean precipitation in the Midwest and Ohio Valley had statistically 

significant increases in Mar–May (Gensini et al. 2023). These regions also displayed 

widespread robust statistically significant increases of up to 100% for the 99th percentile of 

daily precipitation during Sep–May in EOC8.5 (Figs. 2e, 3e, 5e). The largest area of increase 

transitions from the lower Midwest and Ohio Valley in Dec–May to the upper Midwest in 

Sep–Nov. Historically, mean MCS precipitation during the warm season is focused across the 

Midwest and central Great Plains, with large percentages of annual precipitation falling 

within this time (e.g., Ashley et al. 2003; Schumacher and Johnson 2006; Stevenson and 

Schumacher 2014; Feng et al. 2016; Prein et al. 2017; Haberlie and Ashley 2019). For 

example, the Midwest and central Great Plains experienced 350–400 mm of MCS 

precipitation during May–Aug, accounting for upwards of 50–60% of annual accumulation 

(Haberlie and Ashley 2019). The most robust statistically significant increases in mean MCS 

precipitation are in the Northeast into the Appalachian Mountains (Jun–Aug), Ohio Valley 

(Dec–May), and Midwest (Mar–May and Sep–Nov) (Haberlie et al. 2023). These regions 

closely resemble the areas of significant increase in the 99th percentile of daily precipitation 

presented here and experience an increase in average MCS precipitation of approximately 

100–150+ (50) mm in Dec–May EOC8.5 (EOC4.5) as compared to HIST (Haberlie et al. 

2023). Precipitation in the Southeast, Midwest, and Northeast CONUS has increased 

historically and has the potential to be further exacerbated by anthropogenic climate change 
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(Groisman et al. 2005; Alexander et al. 2006; Groisman et al. 2012; Kunkel et al. 2013a; 

Janssen et al. 2014; Huang et al. 2017; Changnon and Gensini 2019; Howarth et al. 2019; 

Fowler et al. 2021). Overall, the 99th percentile of daily precipitation displayed large areas of 

greater than 50% increase by the end of the twenty-first century in all seasons except Jun–

Aug (Figs. 2, 3, 4, 5). These increases in the 99th percentile of daily precipitation are 

particularly concerning given the numerous high-impact floods affecting those regions in 

recent decades (e.g., Junker et al. 1999; Lackmann 2013; Zhang and Villarini 2017; Kraft et 

al. 2023). 

c. Extreme value analysis

Q–Q plots indicate the goodness of fit for the input WRF time series and modeled EVA

distributions (Fig. 6). All cities showed reasonable estimations for the modeled extremes at 

lower magnitudes and transition to underestimating at the highest magnitudes in six of the 

eight cities (Fig. 6a, b, c, e, g, h). Estimation bias may be due to extracted extremes being 

skewed within the upper tail of the distribution, and there are still significant outliers when 

extracting just the extremes of the dataset. Bias is illustrated in the Albany EOC8.5 and 

Tallahassee HIST epochs, where the difference between the highest magnitude and the third 

highest magnitude extracted values is approximately 100 mm (Fig. 6a, h). Therefore, when 

the difference between the largest extreme values is high in magnitude, there is more 

underestimation by the model for those upper values, but the other lower magnitude values 

displayed good estimation by the model. The estimation bias is also shown in Grand Junction 

EOC4.5 and Seattle EOC8.5 (Fig. 6c, g). The larger magnitude values are affected by an 

estimation bias partly due to the small amount of input data (15 values); however, doubling 

the input data to 30 values (block size of 6 months instead of 12 months) still displayed these 

estimation biases at the highest magnitudes.  
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Fig. 6. Q-Q plot of the input WRF versus modeled EVA daily precipitation (mm) extreme 

values for 1990–2005 PRISM (grey) and HIST (black), and 2085–2100 EOC4.5 (orange) and 

EOC8.5 (red) epochs with a block size of one year resulting in 15 values for eight 

climatologically unique cities. The solid line shows the 1:1 trend line, and dots show the 

values of the modeled EVA (x axis) and input WRF (y axis) data. 

Model metrics of r, p, RMSE, and R2 represent the empirical relationship between the 

modeled EVA and input WRF distributions.  Reasonable model estimation of the input 

simulation data is shown with lower values of p and RMSE, while r and R2 require a value 

closer to one. RMSE values for each city were relatively low considering the limited number 

of input extreme values and the underestimation at high precipitation values for some epochs 

(Table 2). For example, Tallahassee HIST had an RMSE of 20 mm, but only the two highest 

magnitude values of HIST were underestimated which led to a higher overall RMSE even 

though all other lower magnitude values had reasonable model estimation (Fig. 6h and Table 

2). The RMSE is skewed by those two highest magnitude precipitation values being more 

robustly underestimated and using the Q-Q plot gives the visual representation that the other 

13 modeled values performed well (Fig 6h). Similarly, an underestimation bias is seen for 

Albany EOC8.5 and Seattle EOC8.5 (Fig. 6a, g and Table 2). The p-values for all cities were 

approximately zero and Pearson’s r showed high correlation with all cities greater than 0.9, 

with most epochs greater than 0.95 (Table 2). While Pearson’s r shows admirable correlation 

in the distribution patterns of the modeled EVA and input WRF data, R2 displays good model 

reliability with values greater than 0.85, indicating that HIST explained at least 85% of the 

variance from the input data for most epochs in each city. Using these statistical model 

metrics in combination with the Q–Q plots gives confidence in the reliability of the modeled 

EVA extremes from the input WRF data used in the proceeding EVA analysis. 
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PRISM HIST EOC4.5 EOC8.5 

Albany, NY 

r 0.977 0.939 0.985 0.908 

p 0.000 0.000 0.000 0.000 

RMSE 6.022 6.238 4.686 22.237 

R2 0.877 0.831 0.924 0.704 

Amarillo, TX 

r 0.968 0.985 0.962 0.982 

p 0.000 0.000 0.000 0.000 

RMSE 2.730 2.608 9.109 6.875 

R2 0.920 0.966 0.821 0.915 

Grand Junction, CO 

r 0.950 0.986 0.976 0.973 

p 0.000 0.000 0.000 0.000 

RMSE 1.440 0.905 3.362 2.910 

R2 0.903 0.949 0.879 0.889 

Minneapolis, MN 

r 0.971 0.964 0.986 0.994 

p 0.000 0.000 0.000 0.000 

RMSE 8.504 6.067 7.822 3.868 

R2 0.859 0.846 0.918 0.973 

Nashville, TN 

r 0.975 0.952 0.973 0.989 

p 0.000 0.000 0.000 0.000 

RMSE 3.530 10.473 10.852 7.611 

R2 0.950 0.815 0.887 0.951 

 Phoenix, AZ 

r 0.964 0.987 0.971 0.993 

p 0.000 0.000 0.000 0.000 

RMSE 4.286 1.922 3.205 2.448 

R2 0.831 0.962 0.934 0.964 

Seattle, WA 

r 0.928 0.937 0.937 0.905 

p 0.000 0.000 0.000 0.000 

RMSE 8.786 2.273 2.897 7.688 

R2 0.756 0.874 0.832 0.701 

Tallahassee, FL 

r 0.972 0.947 0.982 0.975 

p 0.000 0.000 0.000 0.000 

RMSE 17.702 20.572 8.892 11.307 

R2 0.882 0.793 0.960 0.939 

Table 2. Metrics of the modeled EVA and input WRF data for 1990–2005 PRISM and 

HIST, and 2085–2100 EOC4.5 and EOC8.5 epochs for eight climatologically unique cities. 
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We used PDFs to detect the variability of the extreme daily precipitation values in the 

epochs from extreme precipitation values extracted for the EVA. Amarillo and Grand 

Junction are the only cities where HIST exceeds PRISM in the upper tail of the PDF (Fig. 7b, 

c). Differences are expected based on the limitations of using PRISM as the observational 

dataset for comparison to HIST, especially in mountainous and climatologically arid regions 

of the CONUS, which Amarillo, Grand Junction, Phoenix, and Seattle represent (Fig. 7b, c, f, 

g). Albany, Minneapolis, Nashville, Phoenix, and Tallahassee displayed the highest 

differences in the peak of the PDF curve in one or both EOC scenarios (Fig. 7a, d, e, f, h). For 

these cities, the decrease in the peak probability density indicates more variability and 

typically an increased ceiling for precipitation extremes. These scenarios have flattened PDF 

curves (i.e., differing probability densities at the PDF peak) with higher magnitude 

precipitation values at the upper tail of the distribution. The PDFs further indicate the 

potential for increased variability and a higher ceiling for extremes by the end of the twenty-

first century.  
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Fig. 7. The probability density (y axis) of daily precipitation (mm) extremes (x axis) for 

1990–2005 PRISM (grey) and HIST (black), and 2085–2100 EOC4.5 (orange) and EOC8.5 

(red) epochs simulation data for eight climatologically unique cities. 

1) RETURN PERIODS

Every climatologically unique city displayed an increase over HIST in one or both EOC

scenario return period daily precipitation values for 25–500 years (Fig. 8). For the 

comparison of PRISM and HIST, PRISM was within the 95% confidence interval of HIST 

for all return periods except in Amarillo and Seattle where they were below and above the 

95% confidence interval, respectively (Fig. 9). Seattle EOC4.5 scenario is the only city that 

had an EOC scenario below HIST for all return periods examined (Figs. 8g and 9). The return 

period daily precipitation values for each epoch have a 95% confidence interval, which 

becomes large with increasing return periods since some uncertainty of the model comes 

from extrapolating the simulation record of 15 years to longer return periods (Figs. 8 and 9).  

All cities except Amarillo showed differences of less than 30% between PRISM and HIST, 

with many cities below 20% (i.e., Albany, Grand Junction, Nashville, Phoenix, and 

Tallahassee) (Fig. 9). Overall, even with some biases in HIST EOC8.5 showed the most 

robust increases from HIST for all return periods; EOC4.5 changes were generally lower in 

magnitude but still showed modest increases.  
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Fig. 8. Return periods (x axis; years) of daily precipitation (y axis; mm) for 1990–2005 

HIST (black), 2085–2100 EOC4.5 (orange), and 2085–2100 EOC8.5 (red) epochs for eight 

climatologically unique cities. Solid lines denote the median modeled return period. Dashed 

lines indicate the 95% confidence interval (HIST is shaded) calculated using a 1000-iteration 

bootstrap sample. 
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Fig. 9. Return periods (5–500 years) of daily precipitation (mm) for 1990–2005 (PRISM 

and HIST) and 2085–2100 (EOC4.5 and EOC8.5) for eight climatologically unique cities. 

The gradient represents the median of a 1000-iteration bootstrap for each city and the 

brackets contain the mean and 95% confidence interval. 

Return periods can be complicated for communities and stakeholders to interpret, leading 

to inaccurate risk assessments and inadequate mitigation strategies. For example, a 100-year 

extreme daily precipitation event has a 1% chance of happening during any given year but a 

39.4% chance of occurring within 50 years. While return periods can be challenging, the 100-

year return period of daily precipitation values is often used in infrastructure design to reduce 

PRISM 61 [61, ±12] 70 [70, ±15] 81 [81, ±20] 90 [89, ±24] 95 [94, ±26] 98 [97, ±27] 109 [108, ±32] 117 [116, ±35]

HIST 59 [61, ±10] 68 [69, ±13] 78 [79, ±17] 85 [87, ±21] 90 [92, ±23] 93 [95, ±24] 103 [105, ±28] 110 [112, ±31]

EOC4.5 66 [65, ±13] 75 [75, ±16] 88 [86, ±21] 97 [95, ±24] 102 [100, ±26] 106 [104, ±28] 118 [116, ±32] 127 [124, ±36]

EOC8.5 89 [95, ±30] 106 [115, ±40] 128 [140, ±54] 144 [159, ±64] 153 [169, ±70] 160 [177, ±74] 181 [200, ±85] 197 [218, ±95]

PRISM 50 [50, ±6] 56 [56, ±8] 63 [63, ±10] 69 [68, ±12] 72 [72, ±14] 74 [74, ±14] 82 [80, ±17] 87 [86, ±19]

HIST 63 [63, ±9] 72 [72, ±11] 85 [83, ±15] 94 [92, ±17] 99 [96, ±19] 102 [100, ±20] 114 [111, ±24] 123 [119, ±27]

EOC4.5 63 [64, ±16] 74 [74, ±21] 87 [87, ±27] 96 [97, ±32] 102 [103, ±35] 106 [106, ±37] 119 [119, ±43] 128 [129, ±48]

EOC8.5 70 [70, ±16] 83 [83, ±21] 100 [100, ±27] 113 [112, ±32] 120 [119, ±34] 125 [124, ±36] 141 [140, ±43] 154 [152, ±47]

PRISM 20 [20, ±2] 23 [23, ±3] 27 [27, ±5] 31 [29, ±6] 32 [31, ±7] 34 [32, ±7] 37 [35, ±9] 40 [38, ±10]

HIST 22 [22, ±2] 25 [24, ±3] 28 [27, ±4] 30 [30, ±5] 32 [31, ±5] 33 [32, ±6] 36 [35, ±6] 38 [37, ±7]

EOC4.5 27 [27, ±7] 32 [32, ±9] 39 [39, ±12] 44 [43, ±14] 46 [46, ±15] 48 [48, ±16] 55 [54, ±18] 59 [59, ±20]

EOC8.5 27 [27, ±6] 32 [32, ±8] 38 [37, ±10] 42 [42, ±12] 45 [44, ±13] 47 [46, ±14] 52 [52, ±17] 57 [56, ±19]

PRISM 75 [77, ±17] 87 [89, ±22] 101 [104, ±29] 112 [115, ±34] 119 [122, ±37] 123 [126, ±38] 137 [141, ±45] 148 [152, ±50]

HIST 62 [63, ±12] 70 [71, ±15] 80 [81, ±20] 87 [88, ±23] 92 [92, ±25] 95 [95, ±26] 104 [105, ±31] 112 [112, ±35]

EOC4.5 82 [81, ±20] 97 [95, ±25] 117 [114, ±31] 131 [128, ±37] 140 [136, ±40] 146 [141, ±42] 165 [159, ±49] 179 [172, ±54]

EOC8.5 92 [91, ±16] 107 [105, ±20] 126 [122, ±27] 140 [135, ±31] 149 [143, ±33] 154 [148, ±35] 173 [165, ±41] 187 [178, ±45]

PRISM 82 [81, ±10] 93 [91, ±12] 107 [104, ±16] 117 [114, ±19] 124 [119, ±20] 128 [123, ±22] 141 [136, ±25] 152 [146, ±28]

HIST 89 [91, ±17] 101 [103, ±22] 116 [118, ±29] 127 [130, ±34] 134 [137, ±38] 138 [142, ±40] 153 [157, ±47] 164 [168, ±52]

EOC4.5 106 [108, ±22] 124 [126, ±29] 146 [149, ±37] 162 [165, ±43] 172 [175, ±47] 178 [182, ±50] 200 [204, ±58] 216 [220, ±65]

EOC8.5 124 [122, ±25] 145 [142, ±30] 172 [168, ±38] 192 [187, ±44] 203 [198, ±47] 212 [206, ±49] 237 [231, ±58] 257 [251, ±64]

PRISM 34 [34, ±8] 39 [39, ±10] 45 [45, ±13] 50 [50, ±15] 53 [52, ±17] 55 [54, ±17] 61 [61, ±20] 65 [65, ±23]

HIST 38 [37, ±6] 44 [43, ±7] 52 [51, ±9] 58 [57, ±11] 62 [61, ±12] 64 [63, ±13] 72 [71, ±15] 78 [76, ±16]

EOC4.5 43 [43, ±8] 51 [51, ±11] 62 [60, ±14] 69 [68, ±16] 74 [72, ±18] 77 [75, ±19] 87 [84, ±22] 95 [91, ±25]

EOC8.5 36 [36, ±8] 44 [44, ±11] 55 [54, ±13] 62 [61, ±16] 67 [65, ±17] 70 [68, ±18] 80 [78, ±20] 87 [85, ±23]

PRISM 59 [61, ±14] 67 [70, ±19] 78 [81, ±25] 85 [89, ±29] 90 [94, ±31] 93 [97, ±33] 102 [108, ±39] 110 [116, ±43]

HIST 47 [47, ±4] 52 [51, ±5] 58 [57, ±6] 62 [61, ±7] 65 [63, ±8] 67 [65, ±8] 72 [70, ±9] 77 [74, ±11]

EOC4.5 44 [45, ±5] 48 [49, ±6] 53 [54, ±8] 56 [58, ±10] 58 [60, ±10] 60 [61, ±11] 65 [66, ±13] 68 [70, ±15]

EOC8.5 52 [54, ±11] 58 [60, ±14] 65 [69, ±19] 71 [75, ±22] 74 [78, ±24] 77 [81, ±25] 84 [89, ±30] 89 [95, ±33]

PRISM 142 [146, ±38] 170 [175, ±49] 205 [212, ±62] 231 [239, ±72] 246 [254, ±78] 257 [265, ±82] 291 [301, ±96] 317 [326, ±106]

HIST 121 [126, ±34] 142 [148, ±44] 169 [177, ±58] 189 [198, ±68] 200 [211, ±75] 208 [219, ±79] 234 [246, ±91] 254 [266, ±100]

EOC4.5 159 [156, ±30] 189 [185, ±36] 228 [220, ±44] 256 [247, ±50] 273 [262, ±55] 284 [273, ±58] 322 [308, ±67] 350 [335, ±74]

EOC8.5 139 [136, ±32] 168 [163, ±39] 206 [199, ±49] 233 [225, ±55] 250 [240, ±59] 261 [251, ±62] 297 [285, ±72] 325 [311, ±79]

5 10 25 50 75 100 250 500
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impacts and is similarly used in determining insurance premiums for the National Flood 

Insurance Program (NFIP) (Min et al. 2011; Wright et al. 2021; FEMA 2023). 

The percent change above HIST in the EOC scenarios for the 100-year return period of 

daily precipitation values varied for each city but was generally 20% or greater, with very 

large (> 50%) increases shown in Albany, Minneapolis, and Nashville (Fig. 8a, d, e). 

Looking at larger areas, regions of the Intermountain West, Midwest, Southeast, and 

Northeast all showed increases in the 100-year return period daily precipitation values above 

HIST in the EOC scenarios (Fig. 10b, c). A 50% or greater increase was displayed in EOC4.5 

for 4.6% of 30 km grid boxes and 12.6% of the EOC8.5 30 km grid boxes. Regionally, the 

percent increases in the 100-year return period of daily precipitation values in the EOC 

scenarios were approximately 50–100% above the HIST epoch, with higher increases more 

widespread in the EOC8.5 scenario. Increases in the 100-year return period precipitation 

value had statistically significant increases in EOC8.5 for areas of the Intermountain West, 

Southwest, and Northeast while EOC4.5 displayed only sporadic areas of significant 

increases (Fig. 10d, e). National averages for percent change in 100-year return period 

precipitation values display an overall increasing trend with +8% in EOC4.5 and +19.4% in 

EOC8.5 (Fig. 10d, e). These return period precipitation value changes align with previous 

studies showing increases in return period precipitation values for most of the CONUS 

historically and in future simulations, albeit with some slight magnitude variations 

(DeGaeano 2009; Dominguez et al. 2012; Kunkel et al. 2013a). Increases in return period 

precipitation values have significant implications for infrastructure, especially considering 

structures currently under construction that assume historical values. 
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Fig. 10. 100-year return period daily precipitation values (mm) for 1990–2005 HIST (a), 

with raw (b, c) and percent (d, e) differences from HIST for 2085–2100 EOC4.5 and EOC8.5 

epochs. Hatched areas on percent difference panels (third row) indicate regions where the 

median EOC epoch value was outside the HIST 95% confidence interval from a 1000-

iteration bootstrap sample. National averages for each panel are displayed in the lower left. 

4. Discussion and conclusions
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We investigated how extreme daily precipitation—defined as the 99th percentile value in 

a 24-h period—may change by the end of the twenty-first century under two anthropogenic 

emissions scenarios using a novel convection-permitting dynamically downscaled RCM 

dataset with two end-of-century (2085–2100) epochs under pathways RCP4.5 and RCP8.5 

(Table 3). The representation of smaller-scale features in RCMs permits explicit 

representations of hazardous convective weather, which is needed for resolving extreme daily 

precipitation. The simulated HIST epoch (1990–2005) of extreme daily precipitation 

compared favorably with some slight biases to an independent dataset of observations 

(PRISM) from the same time period, providing confidence in the analysis of future 

projections of extreme precipitation in the EOC scenarios (Table 3). Results projected 

increasing values of extreme daily precipitation through the end of the twenty-first century 

for both RCP scenarios in many regions in the CONUS, such as the Northeast, Midwest, 

Southeast, and Pacific Northwest (Table 3). For example, the 99th percentile daily 

precipitation value displayed increases greater than 20 mm in the Ohio Valley and Midwest 

(Dec–May). Several of these regions have historically seen increasing trends that could be 

exacerbated by anthropogenic climate change (e.g., Groisman et al. 2005; Alexander et al. 

2006; Groisman et al. 2012; Kunkel et al. 2013a; Janssen et al. 2014; Huang et al. 2017; 

Changnon and Gensini 2019; Howarth et al. 2019). On the other hand, decreases in the 99th 

percentile of daily precipitation were found in the southern Great Plains in Dec–Feb. EVA 

further revealed an increasing ceiling for extremes in most of the eight climatologically 

unique cities examined, and daily precipitation return periods—a metric useful for insurance 

and engineering—showed robust increases above the 95% confidence interval of HIST by the 

end of the twenty-first century for one or both EOC scenarios in six of the eight cities 

examined. 

Dec–Feb Mar–May Jun–Aug Sept–Nov 

HIST Biases 

Wet bias in the 

Intermountain West, 

northern Great Plains, 

and Midwest 

Wet bias in the 

Intermountain West 

Dry bias in the 

Intermountain West 

Sporadic dry bias in the 

Southeast and wet bias 

in the Intermountain 

West 

National 

Average 

EOC4.5: 31.8 ±21.8 mm 

EOC8.5: 34.8 ±24.1 mm 

EOC4.5: 31.5 ±15.6 mm 

EOC8.5: 32.3 ±17.6 mm 

EOC4.5: 29.0 ±18.0 mm 

EOC8.5: 27.9 ±18.1 mm 

EOC4.5: 29.6 ±15.0 mm 

EOC8.5: 30.4 ±16.2 mm 

99th 

Percentile 

Changes 

Sporadic increases 

across the Intermountain 

West in both EOC 

scenarios 

Lower Midwest into the 

Ohio River Valley 

shows increases of 50–

100% in EOC8.5 

Robust decreases of 

100–150% in the 

Intermountain West in 

EOC8.5 

Sporadic areas of 

decrease in the 

Southwest, northern 

Great Plains, and 

Southeast in EOC8.5 
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Ohio and Tennessee 

River valleys and the 

Northeast display 

increases of 50–100% 

Large decreases up to 

100+% in the Southwest 

for EOC8.5 

Sporadic decreases in 

the central and southern 

Great Plains in EOC8.5 

Increases of ~100% in 

the central Midwest in 

EOC8.5 

Decreases of 50–100% 

in the southern Great 

Plains in both EOC 

scenarios 

Table 3. 99th percentile of daily precipitation HIST biases, national average and standard 

deviation, and statistically significant changes across the CONUS. 

Changes in the lower probability events (e.g., > 100-year return period) can have vast 

socioeconomic implications. The NFIP has Special Flood Hazard Areas (SFHA) which use a 

100-year return period for floodplains, and those within a SFHA with a federally backed

mortgage are required to have flood insurance (FEMA 2023). The NFIP floodplains differ 

slightly from the return periods calculated here since they use return periods based on the 

precipitation impact rather than amount. Both methods, however, communicate the risk 

associated with extreme precipitation events such that changes in return periods could change 

which locations are most vulnerable. Our results showed increases in precipitation values for 

return periods greater than 25 years in both EOC scenarios for all cities examined except 

Seattle, suggesting such changes in vulnerability are likely to occur. These socioeconomic 

implications highlight the importance of future work using land use and population 

projections for stakeholder awareness in adapting to and mitigating the effects of potential 

future changes in extreme precipitation. 

Extreme hazards have low occurrence probabilities, yet the largest impacts, especially in 

current and projected regions of high risk and vulnerability due to increasing urbanization 

(e.g., Strader and Ashley 2015; Ferguson and Ashley 2017; Strader et al. 2017; Villarini and 

Slater 2017; Wing et al. 2018; Andreadis et al. 2022). Some communities in these regions 

lack the technological development and economic support to build resilience to these rare but 

impactful events, highlighting issues of interests, equity, and fairness in socioeconomically 

vulnerable areas and creating a window of opportunity to enact rapid policy change (Bubeck 

et al. 2017). Infrastructure is built with the intent of withstanding extreme events, yet 

precipitation extremes are projected to increase past the historical trends for many regions of 

the CONUS, threatening infrastructure survival against hazards in the future (Wright et al. 

2021). Ultimately, this study illustrates that potential changes in extreme daily precipitation 

across various regions of the CONUS have the potential to impact numerous aspects of 
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society by the end of the twenty-first century. Using projected changes in precipitation risk in 

conjunction with other socioeconomic projections can aid stakeholders in planning for future 

disasters. Future work could focus on sub-daily accumulation for precipitation extremes. 

Additionally, taking a larger ensemble approach by using further emissions scenarios, GCM 

members, and time slices would help discern uncertainty of potential future changes in 

extreme precipitation. 
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