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ABSTRACT: The potential for changes in extreme precipitation events due to anthropogenic climate change may have
significant societal impacts (e.g., agricultural productivity, property loss, and mortality). This project uses a dynamically
downscaled, convection-permitting regional climate model to investigate extreme daily precipitation in the CONUS, de-
fined explicitly as the 99th percentile 24-h accumulated value. The simulation output includes a historical (HIST) baseline
(1990–2005) and two epochs at the end of the twenty-first century (EOC; 2085–2100) under intermediate and pessimistic
emissions scenarios. Independent observations illustrate that HIST admirably represents extreme precipitation climatology
for most locations in the domain. Comparisons between HIST and the two EOC scenarios for the 99th percentile of daily
precipitation show statistically significant increases during December–May across the Midwest and Ohio Valley and statis-
tically significant decreases for the southern Great Plains during December–February. Extreme value analysis further re-
veals increasing variability in precipitation extremes for eight climatologically unique cities across the CONUS by the end
of the twenty-first century and significant increases in return period precipitation amounts for most cities examined. These
results provide additional guidance for stakeholders to reduce societal impacts and economic loss from daily precipitation
extremes and create a more climate-resilient society.

SIGNIFICANCE STATEMENT: This study uses a novel convection-allowing regional climate model to illustrate po-
tential future changes in daily extreme rainfall amounts due to climate change. Future scenarios project robust increases
in these events during some seasons for portions of the Midwest and Ohio Valley, whereas the southern Great Plains
are projected to experience decreases. Furthermore, we find a notable increase in the variability of extreme daily precipita-
tion across various CONUS cities by the end of the twenty-first century. Overall, our results further our understanding of
how extreme precipitation events may change in the future and, therefore, help policymakers and stakeholders adapt to
these impactful events.
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1. Introduction

The impacts of anthropogenic climate change will be felt
most strongly through changes in the intensity and frequency
of hazards such as extreme precipitation and resulting floods.
Floods are the second deadliest weather-related hazard in the
United States, falling just behind heat, causing an average
of 80–100 flood deaths per year (Ashley and Ashley 2008a,b;
Villarini and Slater 2017; Zhou et al. 2018; Lim and Skidmore
2019; Han and Sharif 2021). The United States recorded
40 separate flood disasters from 1980 to 2022 (excluding
inland flood damage caused by tropical cyclones), each result-
ing in at least $1 billion in consumer price index (CPI)- adjusted
losses (NCEI 2023). Those billion-dollar flood disasters, on av-
erage, produced $4.3 billion in monetary loss (CPI-adjusted)
and are comparable to other studies showing average annual
losses in the $4–9 billion range (Villarini and Slater 2017;
Zhou et al. 2018; National Academies of Sciences, Engineering,
and Medicine 2019; NCEI 2023). As of 2011, the observed
increase in economic losses had not been directly related to
anthropogenic climate change, but rather largely attributed

to socioeconomic factors such as increasing exposure and the
“expanding bull’s-eye effect” (Bouwer 2011; Ashley et al.
2014; Strader and Ashley 2015). Therefore, there is still an in-
creasing risk of flooding and losses with increasing vulnerabil-
ity due to projected land use and exposure changes (Strader
and Ashley 2015; Ferguson and Ashley 2017; Andreadis et al.
2022; Rashid et al. 2023).

Overall and extreme precipitation has been increasing
globally over the past several decades (e.g., Dai et al. 2004;
Groisman et al. 2005; Alexander et al. 2006; Min et al. 2011;
O’Gorman 2012; Westra et al. 2013; Papalexiou and Monta-
nari 2019). More than 50% of global stations showed increas-
ing precipitation trends, and the midlatitudes, in particular,
have experienced an increased frequency of extreme precipi-
tation events and a tendency for wetter conditions (Groisman
et al. 2005; Alexander et al. 2006; Min et al. 2011; Westra et al.
2013; Papalexiou and Montanari 2019). In the CONUS, there
has been a statistically significant upward trend in precipi-
tation over the last ;100 years, especially in the Midwest,
Southeast, and Northeast (e.g., Groisman et al. 2005; Alexander
et al. 2006; Groisman et al. 2012; Kunkel et al. 2013a; Janssen
et al. 2014; Huang et al. 2017; Changnon and Gensini 2019;
Fowler et al. 2021). For many regions, droughts have become
shorter in duration, less frequent, and less spatially expansive,Corresponding author: Vittorio Gensini, vgensini@niu.edu
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except in the Southwest and interior West; however, drying
could expand into the low- and midlatitudes as higher green-
house gas concentrations increase temperatures and alter
sensible and latent heat fluxes (Trenberth et al. 2003; Dai
et al. 2004; Mishra and Singh 2010; Dai 2011; Trenberth
2011; Trenberth et al. 2014; Zhang et al. 2021). These studies
show a tendency for more extreme conditions in many regions
of the CONUS, yet the historical changes are relatively small
in comparison to late twenty-first century projections.

The atmospheric response of extreme precipitation to an-
thropogenic climate change has been researched extensively
(e.g., Meehl et al. 2005; Kharin et al. 2007; Allan and Soden
2008; O’Gorman and Schneider 2009; Sugiyama et al. 2010;
Pan et al. 2011; Dominguez et al. 2012; Zhu et al. 2013;
Janssen et al. 2014; Prein et al. 2017; Huang and Stevenson
2021; Picard et al. 2023). By using emission scenarios}such
as representative concentration pathways (RCPs)}one can
apply a storyline approach and extensively examine future
projections of the atmospheric state and, thus, create climato-
logies for future scenarios (e.g., Kharin et al. 2007; Kunkel
et al. 2013b; Janssen et al. 2014; Hazeleger et al. 2015; Prein
et al. 2017; Shepherd et al. 2018; Li et al. 2022; Quintero et al.
2022; Gensini et al. 2023; Rashid et al. 2023). For example,
North America could experience an increase in mesoscale
convective system (MCS) frequency and a 15%–40% increase
in maximum precipitation rates due to a deeper layer permit-
ting more collision and coalescence (Pan et al. 2011; Trenberth
2011; Prein et al. 2017; Haberlie et al. 2023). Spatiotemporal
changes in MCSs can have significant socioeconomic impacts
since a large proportion of annual precipitation accumulation
stems from these events (e.g., Ashley et al. 2003; Schumacher
and Johnson 2006; Stevenson and Schumacher 2014; Feng et al.
2016; Prein et al. 2017; Haberlie and Ashley 2019). Highlighting
the potential changes in future extreme precipitation can in-
form stakeholders so that they may develop effective mitigation
and adaptation strategies to reduce impacts.

Adequate horizontal grid spacing of a regional climate model
(RCM) is necessary to interpret projected changes in mesoscale
processes, such as convective precipitation not well resolved
by the relatively coarse horizontal grid spacing of general cir-
culation models (GCMs). The process of dynamical downscal-
ing (e.g., Prein et al. 2015) is often employed where a RCM is
forced by GCM output to both implicitly and explicitly exam-
ine hazardous convective weather, such as extreme precipita-
tion, at a convection-allowing scale (e.g., Trapp et al. 2011;
Robinson et al. 2013; Gensini and Mote 2014; Tippett et al.
2015; Hoogewind et al. 2017; Trapp et al. 2019; Haberlie et al.
2022; Ashley et al. 2023; Gensini et al. 2023). RCM simula-
tions at this scale typically show only a single outcome, which
makes reaching definitive conclusions challenging unless other
experiments (i.e., an ensemble approach) are generated to
better discern uncertainty (Gensini et al. 2023). An ensemble
approach, however, is challenging to execute due to computa-
tional limitations and considerable time expenditure for high-
resolution RCM simulations, a limitation that has, until recently,
permitted only a few simulations of substantial duration at
convection-allowing scales.

Here, we use a novel dynamically downscaled convection-
permitting simulation to examine projected changes in extreme
daily precipitation throughout the CONUS during the twenty-
first century. The model used herein allows for representation
of regional climate change of precipitation extremes closer to
the local scales at which they occur (e.g.,,4-km horizontal grid
spacing), which is of great interest to stakeholders. Section 2
describes the datasets and methodology used in this study.
Results are presented in section 3, with a spatiotemporal
analysis of extreme daily precipitation followed by an extreme
value analysis (EVA). Finally, a discussion and concluding
remarks follow in section 4.

2. Data and methodology

a. RCM output

Our RCM simulations were conducted with the Advanced
Research version of Weather Research and Forecasting (WRF)
Model (WRF-ARW version 4.1.2; Skamarock et al. 2019) con-
figured with a horizontal grid spacing of 3.75 km and 51 vertical
levels across the CONUS. WRF-ARW is a fully compressible
nonhydrostatic model widely used in both operational forecast-
ing and research (Skamarock and Klemp 2008; Powers et al.
2017). Small horizontal grid spacing (i.e., #4 km) permits the
removal of a convective parameterization scheme, allowing the
explicit development of all modes of deep, moist convection
(Weisman et al. 1997; Skamarock and Klemp 2008; Westra et al.
2014). Initial and lateral boundary conditions input into the
RCM stemmed from the Community Earth System Model
(CESM; Hurrell et al. 2013) GCM output, a participant in
phase 5 of the Coupled Model Intercomparison Project
(CMIP5; Taylor et al. 2012). We used a version of these data
from Bruyère et al. (2014) that performed an additional regrid
and bias-correction using 1981–2005 ERA-Interim reanalysis
(Dee et al. 2011). Spectral nudging was used at 6-h intervals to
large-scale (3x; 2y) features for temperature T, specific hu-
midity q, zonal wind speed u, meridional wind speed y , and
geopotential F above the planetary boundary layer. The
complete RCM design and configuration is detailed in Gensini
et al. (2023).

RCM simulations were continuously integrated over a hydro-
logic year (1 October–30 September), with reinitialization
each 1 October. Simulated time periods include three 15-yr
epochs, with a historical (HIST) baseline (1990–2005) and two
future epochs (EOC; 2085–2100) using RCP4.5 (EOC4.5)
and RCP8.5 (EOC8.5) future climate scenarios (Moss et al.
2010). These RCPs}used in the Intergovernmental Panel on
Climate Change (IPCC) Fifth Assessment Report (AR5;
IPCC 2014)}permit the investigation of the atmospheric reac-
tion to different plausible future climates with differing levels
of radiative forcings from changes in greenhouse gasses (Moss
et al. 2010). RCP4.5 represents a moderate future climate
scenario with stabilization of radiative forcing and green-
house gas concentrations without overshoot by 2100, while
RCP8.5 represents a scenario with a significant level of radi-
ative forcing (nearly double the RCP4.5), falling within the
90th percentile of the reference emissions range for energy
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and industry carbon dioxide emissions (Moss et al. 2010).
While now considered to be highly improbable, RCP8.5 is
widely used since changes are most evident in this scenario
(i.e., the signal-to-noise ratio is maximized) and provides a
mode of comparison with both previous studies and for
RCP4.5 used herein.

Daily precipitation amounts analyzed herein are derived
from the Air ForceWeather Agency (AFWA; Creighton et al.
2014) total simulation precipitation accumulation variable ar-
chived at 15-min output intervals (in mm). The AFWA total
precipitation variable is based on accumulation since the
simulation start (Creighton et al. 2014). Daily precipitation
(1200–1200 UTC) climatologies are then aggregated from the
HIST, EOC4.5, and EOC8.5 15-min subdaily AFWA total
precipitation data.

b. PRISM

To compare HIST daily extreme precipitation to observa-
tions, we use the Parameter-Elevation Regressions on Inde-
pendent Slopes Model (PRISM; Daly et al. 1994). PRISM
data encompass the CONUS with horizontal grid spacing of
4 km. Data are daily (1200–1200 UTC) generated from a digi-
tal elevation model, station data (including federal, state, and
local weather networks), and radar precipitation estimates
(where available) to produce gridded daily precipitation esti-
mates (Daly et al. 1994). PRISM is not ground truth per se;
rather, it serves as a tool to assess the similarity between the
simulated HIST and a dataset established using observations
in its creation. PRISM does have disadvantages, such as
limited station density and temporal inconsistencies in some
regions (Daly et al. 2021); however, advantages include rel-
atively high-resolution, quality-controlled data that are
more useful in mountainous regions compared to station
data alone as the process considers physiographic features
(e.g., coastline proximity, topographic indices, and location)
to better represent areas with complexities such as preci-
pitation shadows and temperature inversions (Daly et al.
2008, 2021).

PRISM data from 1 October 1990 to 30 September 2005
(i.e., the HIST climate simulation period) were bilinearly re-
gridded to match the WRF-ARW lambert conformal projec-
tion and horizontal grid spacing of 3.75 km for comparison.
The time series was aggregated into seasonal and annual cli-
matologies to assess the HIST epoch performance since a
one-to-one event comparison cannot be implemented due to
the HIST epoch driven by a free-running GCM using histori-
cal initial conditions. To determine any error in the WRF his-
torical baseline, we compared the HIST and PRISM output
using Pearson’s correlation coefficient r, root-mean-square
error (RMSE), and p value (95% confidence level) from a
Mann–Whitney U test for the medians using a field signifi-
cance false discovery rate of a 5 0.1. Additionally, we chose
eight climatologically unique CONUS cities for further
analysis following Gensini et al. (2023): Albany, New York;
Amarillo, Texas; Grand Junction, Colorado; Minneapolis,
Minnesota; Nashville, Tennessee; Phoenix, Arizona; Seattle,
Washington; and Tallahassee, Florida. These cities are within

eight of the nine NCEI climate regions and six of the seven
National Climate Assessment (NCA) CONUS regions (Karl
and Koss 1984; Wuebbles et al. 2017), thus representing a
selection of climatologically diverse areas. Additionally, cit-
ies represent higher socioeconomic risk due to increased
population density and vulnerabilities associated with urban
infrastructure (e.g., Lee et al. 2016; Zhou et al. 2019).

c. Defining extreme precipitation

Extreme precipitation changes over relatively short inter-
vals are particularly important due to their potential societal
impacts, and given the many options, it was important to
choose the optimal definition that can be directly compared
to previous research and ensure relevance to those impacts.
Annual extreme events can be used to determine the proba-
bility of 100-yr return period precipitation values, which can
then inform infrastructure design and mitigation efforts (Min
et al. 2011; Wright et al. 2021). The leading definition for ex-
treme precipitation over time interval N uses percentiles, es-
pecially above the 95th (e.g., Groisman et al. 2005; Sillmann
and Roeckner 2008; O’Gorman 2012; Agel et al. 2015; Armal
et al. 2018; Howarth et al. 2019). Some studies have used mul-
tiple thresholds of percentiles to show changes in various
parts of the probability density function (e.g., Groisman et al.
2005; Alexander et al. 2006; Allan and Soden 2008; Loriaux
et al. 2013; Huang and Stevenson 2021). Here, we define ex-
treme daily precipitation to be the 99th percentile of daily
precipitation over the entire epoch time series. The 24-h all-
day percentiles are used over wet-day percentiles, as the latter
can produce misleading results due to high sensitivity to the
fraction of wet days and precipitation accumulations of a day
or longer are relevant for areal flooding (e.g., Lenderink and
vanMeijgaard 2008; O’Gorman and Schneider 2009; Min et al.
2011; Chan et al. 2014; Agel et al. 2015; Schär et al. 2016;
Armal et al. 2018; Changnon and Gensini 2019).

d. EVA

Extreme value theory (EVT; Gumbel 1958) characterizes
the frequency and intensity of extremes (e.g., Friederichs
2010; Min et al. 2011; Kunkel et al. 2013a; Westra et al. 2013;
Agel et al. 2015; Kumar et al. 2015; Tabari 2021; Gensini et al.
2023). EVT is useful since extremes would stay constant in
a stationary climate, but revealing a trend indicates attribu-
tion to nonstationary forcing, such as anthropogenic climate
change. Here, we implement univariate EVA using the Fisher–
Tippett–Gnedenko (Fisher and Tippett 1928; Gnedenko 1943)
theorem with the daily precipitation time series for the PRISM,
HIST, EOC4.5, and EOC8.5 epochs and performed the analysis
with the Python package pyextremes (https://georgebv.github.io/
pyextremes/) inspired by Coles (2001).

The generalized extreme value approach has two methods
for analysis: block maxima (BM) and peak over threshold
(POT). With a block size of 1 year, the BM method takes the
maximum value from each year, making the sample size equal
to the number of years. The POT method permits a larger
sample size by extracting events based on a selected critical
value but is highly dependent on the critical threshold value
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chosen and can result in misleading conclusions (Friederichs
2010; Tabari 2021). In comparing BM and POT methods for
climate change impacts on global flood and extreme precipita-
tion events, Tabari (2021) found the difference in magnitude
between the methods to be statistically significant for longer
return intervals; spatially, these methods displayed inconsis-
tency in the tropics and subtropics, yet high consistency in the
Northern Hemisphere extratropics. Here, we use the BM
technique since it creates a more stable model, whereas POT
is highly dependent on the threshold chosen and clustering
distance, making the model more sensitive. To avoid captur-
ing seasonality, we chose a BM block size of 1 year and ex-
tracted values for the model based on the maximum 24-h
precipitation value for each hydrologic year (totaling 15 val-
ues for each epoch).

Extracted extremes were fit to a maximum likelihood esti-
mate model and a right-skewed Gumbel distribution. The
right-skewed Gumbel distribution was selected using model
metrics of Akaike information criterion (AIC), log-likelihood,
location, and scale to compare the right-skewed Gumbel and
generalized extreme distribution fits on the extracted time se-
ries. AIC uses log-likelihood in the calculation and evaluates
how accurately the modeled EVA data fit the original WRF
input to compare the relative goodness of fit; a lower score in-
dicates better modeled data. The AIC for all epochs in each
city showed that the right-skewed Gumbel distribution had
lower scores than the generalized extreme value distribution,
except for the HIST and EOC8.5 epochs for Seattle, Washing-
ton (Fig. 3 in Stinnett 2023).

Quantile–quantile (Q–Q) plots for the cities have the same
x- and y-axis scale to compare the modeled EVA and input
WRF data to establish the accuracy of the modeled data,
which is linear on a 1:1 trend line when the modeled EVA
data reasonably describe the original input WRF data input.
Model statistics such as Pearson’s r, RMSE, p value, and co-
efficient of determination (R2) were used to rate model per-
formance. The R2 demonstrates how well the modeled EVA
values match the WRF input by explaining the variance from
the input WRF data and is the better model reliability metric.
This metric contrasts Pearson’s r which not only evaluates the
distribution pattern but also helps compare the historical
baseline with independent observations since it is not a one-
to-one comparison like used in the EVA. Probability density
functions (PDFs) were calculated for all four epochs (PRISM,
HIST, EOC4.5, and EOC8.5). These PDFs are of the mod-
eled extremes, not the entire epoch time series, where each
point has a value and associated probability to further identify
variability within the epochs.

The probability of exceedance (P) is the probability of a
value with a specific rank being exceeded within the given
time period. The P is calculated using the equation:

P 5
r 2 a

n 1 1 2 a 2 b
,

where r is the rank of the extreme value, n is the number of
extreme values, and a and b are the empirical plotting param-
eters. EVA utilizes the Weibull plotting position where a 5 0

and b 5 0. For the extracted data used here, rank values are
from 1 to 15 where the most extreme value has a rank of 1
and the annual exceedance probability is 1/16 or 0.0625.

The return period (R; Makkonen 2006) relates to the likeli-
hood of a precipitation value occurring within any given year.
The R is calculated as follows:

R 5
1
Pl

,

where P is the annual probability of exceedance (i.e., 1% for
a 100-yr event) and l is the rate of extreme events per block
which equals 1 with a return period and block size of 1 year.
We used a 1000-iteration bootstrap sample to calculate the
95% confidence interval of the 2–500-yr return periods. Statis-
tical significance was determined where the median EOC
epoch return period precipitation value was outside the 95%
confidence interval from the 1000-iteration bootstrap sample
for the HIST. A wider confidence interval signifies higher un-
certainty, partly due to a limited amount of input data, which
is a limitation in the return period calculations for these
datasets.

The spatial plots of the 100-yr return periods of daily pre-
cipitation values for the eight climatologically unique cities
were spatially aggregated to 30 km from the native 3.75-km
horizontal grid spacing using both a spatial mean and a spatial
maximum to account for spatial uncertainty. The HIST 30-km
mean return period daily precipitation values were closest to
NOAA Atlas 14 series (e.g., Vol. 9; Perica et al. 2013 and
Vol. 10; Perica et al. 2015, revised 2019), PRISM, and the na-
tive grid spacing data compared to the HIST 30-km maximum
(not shown). Therefore, we continued to use the 30-km mean
value in the spatial analysis of the EOC4.5 and EOC8.5 100-yr
return interval to reduce computational expense.

3. Results

a. Comparison of HIST to PRISM

Despite a few regional and seasonal biases, HIST daily
mean and extreme precipitation are compared favorably to
PRISM. Pearson’s r correlation for average annual precipita-
tion between PRISM and HIST was found to be 0.89 herein
and 0.91 in Gensini et al. (2023), while the RMSE was found
to be 214.6 mm herein and 210 mm in Gensini et al. (2023)
(Table 1). These differences between the current study and

TABLE 1. Comparison of 1990–2005 PRISM and HIST mean
and daily 99th percentile precipitation.

Annual DJF MAM JJA SON

Mean precipitation
r 0.89 0.91 0.87 0.90 0.84
p 0.0 0.0 0.0 0.0 0.0
RMSE 214.6 87.3 58.4 77.9 68.9

Daily 99th percentile
r 0.89 0.89 0.87 0.88 0.84
p 0.0 0.0 0.0 0.0 0.0
RMSE 7.8 12.3 7.9 9.2 8.9
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Gensini et al. (2023) are likely associated with differing
regridding and spatial clipping techniques used on the time
series domain. The annual 99th percentiles of PRISM and
HIST were also highly correlated with Pearson’s r correlation
of 0.89, p ’ 0, and RMSE 5 7.8 mm (Figs. 1a–d and
Table 1). Pearson’s r correlation between PRISM and
HIST minimally dropped for the 99th percentile seasonally
(December–February 5 0.89; March–May 5 0.87; June–
August 5 0.88; September–November 5 0.84) compared to
seasonal mean precipitation (Table 1). These model metrics
illustrate that HIST admirably represented the mean and 99th
percentile of daily precipitation annually and seasonally com-
pared to PRISM.

Regarding regional biases, the HIST annual 99th percentile
of daily precipitation was significantly wetter for a large area

of the Intermountain West and smaller areas in the southern
Great Plains and Midwest, while significantly drier areas were
mainly confined to the Northeast (Fig. 1d). On a seasonal
basis, there were differences in the magnitude of the 99th per-
centile of daily precipitation for various regions with raw dif-
ferences primarily within 20 mm; each season had an RMSE
of 12.3 (December–February), 7.9 (March–May), 9.2 (June–
August), and 8.9 (September–November) mm. Differences
between HIST and PRISM displayed a statistically significant
(p , 0.05) wet bias in regions of Intermountain West during
September–February and in the northern Great Plains and Mid-
west during December–February (Figs. 1h,t). Some of these re-
gions coincided with less than 10-mm raw differences}especially
in the northern Great Plains}but made for large percent
(e.g., 1150%) differences due to relatively small denominators.

FIG. 1. The 99th percentile of daily precipitation (mm) for 1990–2005 (a),(e),(i),(m),(q) HIST and (b),(f),(j),(n),(r) PRISM and the
(c),(g),(k),(o),(s) raw and (d),(h),(l),(p),(t) percent differences between them for (first row) annual, (second row) December–
February, (third row) March–May, (fourth row) June–August, and (fifth row) September–November. RMSE values for each row are
shown in Table 1. Hatched areas in the fourth column indicate where a Mann–Whitney U test determined statistically significant differ-
ences (p, 0.05) between the epochs with a field significance false discovery rate of a 5 0.1.

S T I N N E T T E T A L . 1527DECEMBER 2024

Authenticated washley@niu.edu | Downloaded 12/24/24 01:09 PM UTC



Similarly, the statistically significant HIST dry bias in the
western CONUS for June–August (Fig. 1p) also showed
small absolute differences and large negative percent differ-
ences (i.e., HIST underestimated precipitation). As sug-
gested in Gensini et al. (2023), this dry bias could be partly
related to the North American monsoon season, which
peaks in the warm season for the Southwest (Adams and
Comrie 1997). The September–November statistically sig-
nificant dry bias in the Southeast and along the Atlantic
coast may be attributed to poor model representation of
tropical cyclone precipitation due to limited model domain
extent over the Gulf of Mexico and Atlantic Ocean (Figs. 1s,t).
It is important to note that caution should be used when inter-
preting PRISM as ground truth during analysis since it has limi-
tations, especially in regions with limited station density and
radar coverage.

b. Future changes in percentiles

We compared HIST to potential future climate scenarios
(EOC; 2085–2100) using RCP4.5 (EOC4.5) and RCP8.5
(EOC8.5) to assess future changes in extreme precipitation.
In HIST, the daily 99th percentile precipitation values were
generally less than 80 mm for most CONUS locations. A
pattern emerged in both EOC scenarios across seasons,
which showed the highest magnitude changes in the 99th
percentile of daily precipitation were increases in the Cas-
cade Mountains and Ohio River Valley and decreases in the
Southwest and southern Great Plains (Figs. 2–5). These
changes align with previous research examining historical
and potential future changes for percentiles in these regions
of the CONUS (e.g., Groisman et al. 2005; Alexander et al.
2006; Kunkel et al. 2013a; Janssen et al. 2014; Huang et al.
2017; Fowler et al. 2021; Huang and Stevenson 2021). Part
of the projected increases in annual precipitation (Gensini
et al. 2023) could be explained by an increase in the 99th
percentile values in the future, which indicates an increasing
probability of extreme precipitation (i.e., exceeding the
HIST 99th percentile) by the end of the twenty-first century
in both EOC scenarios.

1) WESTERN CONUS

Implementing a seasonal analysis of the 99th percentile of
daily precipitation permits the identification of specific spatio-
temporal changes through the end of the twenty-first century.
Results reveal the largest areas of statistically significant de-
creases in the 99th percentile of daily precipitation were in
EOC8.5 in the Southwest (March–May; Fig. 3e) and Inter-
mountain West (June–August; Fig. 4e). Most of these areas of
decrease in the 99th percentile of daily precipitation are con-
sistent with statistically significant decreases in mean seasonal
precipitation in EOC8.5 as compared to HIST (Gensini et al.
2023). Many decreases in the 99th percentile of daily precip-
itation had large negative percent differences of 50%–150%
in the Southwest and Intermountain West, consistent with
the recent drought trends in these regions and previous
work projecting increasing aridity through the end of the
twenty-first century (e.g., Mishra and Singh 2010; Dai 2011;

Naumann et al. 2018; Cook et al. 2020; Ukkola et al. 2020).
Therefore, changes in extreme precipitation in these re-
gions will have large implications for regional hydroclimate
stability and water scarcity in these climatologically arid
regions.

Smaller, more sporadic regions of the northern Intermoun-
tain West displayed statistically significant increases of the
99th percentile of daily precipitation for both EOC scenarios
in December–February (Figs. 2d,e), and EOC8.5 mean sea-
sonal precipitation during December–May showed statisti-
cally significant increases in the Pacific Northwest (Gensini
et al. 2023). Assuming the 08C isotherm remains low in eleva-
tion, the differences between the EOC scenarios and HIST
could imply an increased ceiling for snowpack in mountainous
areas of the western CONUS, especially in the Pacific North-
west. However, Gensini et al. (2023) show temperature in-
creases of approximately 28–78C in areas of the Intermountain
West during December–February EOC8.5 compared to
HIST, while March–May exhibit less than 28C of warming for
most regions of the Intermountain West. Thus, the potential
change of a smaller fraction of precipitation falling as snow
could lead to an increased flood risk during winter and spring
and water scarcity in summer due to decreased snowpack
(Pan et al. 2011; Trenberth 2011; Li et al. 2022; Asif et al.
2023). These results agree with previous simulations encom-
passing the western CONUS projecting precipitation in-
creases, most notably in the Pacific Northwest, by the end of
the twenty-first century (e.g., Pan et al. 2011; Dominguez et al.
2012; Huang and Stevenson 2021).

2) EASTERN CONUS

The eastern CONUS (i.e., regions east of the Rocky
Mountains) showed the highest 99th percentile of daily
precipitation in the Midwest and Southeast in all seasons
(Figs. 2–5). Mean seasonal precipitation in the southern
Great Plains in December–February showed statistically
significant decreases in EOC8.5 compared to HIST (Gensini
et al. 2023). Similarly, the 99th percentile of daily precipita-
tion displayed areas of statistically significant decreases in
the southern Great Plains during December–February (EOC4.5
and EOC8.5; Figs. 2d,e) and March–May (EOC8.5; Fig. 3e).
No widespread statistically significant changes were seen for
EOC4.5 in March–November (Figs. 3d, 4d, and 5d), but raw
differences showed widespread decreases in the Great Plains,
Midwest, and mid-South for June–August in both EOC sce-
narios (Figs. 4b,c).

The climatological peak for tropical cyclones}one source
of extreme precipitation}occurs during September–November,
with 70% and 58% of extreme precipitation events resulting
from tropical cyclones in September and October, respectively,
during the period 2002–11 (e.g., Kunkel et al. 2012; Stevenson
and Schumacher 2014; Moore et al. 2015). Our simulations
showed large areas of decrease in the Southeast and Atlantic
coast during September–November in EOC4.5 and EOC8.5
(Figs. 5b,c) but small areas of statistical significance (Figs. 5d,e).
These projected changes could be due to decreased tropical
cyclone frequency and related precipitation. However, since the
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HIST showed a statistically significant dry bias for those regions
during September–November (Fig. 1t), extreme precipitation
caused by tropical cyclones may be underestimated in the
HIST and EOC simulations.

EOC8.5 seasonal mean precipitation in the Midwest and
Ohio Valley had statistically significant increases in March–
May (Gensini et al. 2023). These regions also displayed wide-
spread robust statistically significant increases of up to 100%
for the 99th percentile of daily precipitation during September–

May in EOC8.5 (Figs. 2e, 3e, and 5e). The largest area of in-
crease transitions from the lower Midwest and Ohio Valley in
December–May to the upper Midwest in September–November.
Historically, mean MCS precipitation during the warm season
is focused across the Midwest and central Great Plains, with
large percentages of annual precipitation falling within this
time (e.g., Ashley et al. 2003; Schumacher and Johnson 2006;
Stevenson and Schumacher 2014; Feng et al. 2016; Prein et al.
2017; Haberlie and Ashley 2019). For example, the Midwest

FIG. 2. December–February 99th percentile of daily precipitation (mm) for (a) 1990–2005 HIST, with (b),(c) raw
and (d),(e) percent differences from HIST for 2085–2100 EOC4.5 and EOC8.5 epochs. Hatched areas on percent
difference panels indicate regions where a Mann–Whitney U test determined statistically significant differences
( p, 0.05) between the epochs with a field significance false discovery rate of a 5 0.1.
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and central Great Plains experienced 350–400 mm of MCS
precipitation during May–August, accounting for upward of
50%–60% of annual accumulation (Haberlie and Ashley 2019).
The most robust statistically significant increases in mean MCS
precipitation are in the Northeast into the Appalachian Moun-
tains (June–August), Ohio Valley (December–May), and
Midwest (March–May and September–November) (Haberlie
et al. 2023). These regions closely resemble the areas of signifi-
cant increase in the 99th percentile of daily precipitation pre-
sented here and experience an increase in average MCS
precipitation of approximately 100–1501 (50) mm in Decem-
ber–May EOC8.5 (EOC4.5) as compared to HIST (Haberlie

et al. 2023). Precipitation in the Southeast, Midwest, and
Northeast CONUS has increased historically and has the po-
tential to be further exacerbated by anthropogenic climate
change (Groisman et al. 2005; Alexander et al. 2006; Groisman
et al. 2012; Kunkel et al. 2013a; Janssen et al. 2014; Huang et al.
2017; Changnon and Gensini 2019; Howarth et al. 2019;
Fowler et al. 2021). Overall, the 99th percentile of daily precip-
itation displayed large areas of greater than 50% increase by
the end of the twenty-first century in all seasons except June–
August (Figs. 2–5). These increases in the 99th percentile of
daily precipitation are particularly concerning given the nu-
merous high-impact floods affecting those regions in recent

FIG. 3. As in Fig. 2, but for March–May.
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decades (e.g., Junker et al. 1999; Lackmann 2013; Zhang and
Villarini 2017; Kraft et al. 2023).

c. Extreme value analysis

Q–Q plots indicate the goodness of fit for the input WRF
time series and modeled EVA distributions (Fig. 6). All cities
showed reasonable estimations for the modeled extremes at
lower magnitudes and transition to underestimating at the
highest magnitudes in six of the eight cities (Figs. 6a–c,e,g,h).
Estimation bias may be due to extracted extremes being
skewed within the upper tail of the distribution, and there are
still significant outliers when extracting just the extremes of

the dataset. The bias is illustrated in the Albany EOC8.5 and
Tallahassee HIST epochs, where the difference between the
highest magnitude and the third highest magnitude extracted
values is approximately 100 mm (Figs. 6a,h). Therefore, when
the difference between the largest extreme values is high in
magnitude, there is more underestimation by the model for
those upper values, but the other lower magnitude values dis-
played good estimation by the model. The estimation bias is
also shown in Grand Junction EOC4.5 and Seattle EOC8.5
(Figs. 6c,g). The larger magnitude values are affected by an
estimation bias partly due to the small amount of input data
(15 values); however, doubling the input data to 30 values

FIG. 4. As in Fig. 2, but for June–August.
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(block size of 6 months instead of 12 months) still displayed
these estimation biases at the highest magnitudes.

Model metrics of r, p, RMSE, and R2 represent the empiri-
cal relationship between the modeled EVA and input WRF
distributions. Reasonable model estimation of the input simu-
lation data is shown with lower values of p and RMSE, while
r and R2 require a value closer to one. RMSE values for each
city were relatively low considering the limited number of in-
put extreme values and the underestimation at high precipita-
tion values for some epochs (Table 2). For example,
Tallahassee HIST had an RMSE of 20 mm, but only the two
highest magnitude values of HIST were underestimated which

led to a higher overall RMSE even though all other lower
magnitude values had reasonable model estimation (Fig. 6h
and Table 2). The RMSE is skewed by those two highest mag-
nitude precipitation values being more robustly underesti-
mated and using the Q–Q plot gives the visual representation
that the other 13 modeled values performed well (Fig. 6h).
Similarly, an underestimation bias is seen for Albany EOC8.5
and Seattle EOC8.5 (Figs. 6a,g and Table 2). The p values for
all cities were approximately zero and Pearson’s r showed high
correlation with all cities greater than 0.9, with most epochs
greater than 0.95 (Table 2). While Pearson’s r shows admirable
correlation in the distribution patterns of the modeled EVA

FIG. 5. As in Fig. 2, but for September–November.
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FIG. 6. Q–Q plot of the input WRF vs modeled EVA daily precipitation (mm) extreme values for
1990–2005 PRISM (gray) and HIST (black) and 2085–2100 EOC4.5 (orange) and EOC8.5 (red) epochs
with a block size of 1 year resulting in 15 values for eight climatologically unique cities. The solid line
shows the 1:1 trend line, and dots show the values of the modeled EVA (x axis) and input WRF
(y axis) data.
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and inputWRF data,R2 displays good model reliability with values
greater than 0.85, indicating that HIST explained at least 85% of
the variance from the input data for most epochs in each city. Using
these statistical model metrics in combination with the Q–Q plots
gives confidence in the reliability of the modeled EVA extremes
from the inputWRF data used in the proceeding EVA analysis.

We used PDFs to detect the variability of the extreme daily
precipitation values in the epochs from extreme precipitation
values extracted for the EVA. Amarillo and Grand Junction
are the only cities where HIST exceeds PRISM in the upper
tail of the PDF (Figs. 7b,c). Differences are expected based
on the limitations of using PRISM as the observational data-
set for comparison to HIST, especially in mountainous and
climatologically arid regions of the CONUS, which Amarillo,
Grand Junction, Phoenix, and Seattle represent (Figs. 7b,c,f,g).

Albany, Minneapolis, Nashville, Phoenix, and Tallahassee dis-
played the highest differences in the peak of the PDF curve in
one or both EOC scenarios (Figs. 7a,d–f,h). For these cities, the
decrease in the peak probability density indicates more variability
and typically an increased ceiling for precipitation extremes.
These scenarios have flattened PDF curves (i.e., differing proba-
bility densities at the PDF peak) with higher magnitude precipita-
tion values at the upper tail of the distribution. The PDFs further
indicate the potential for increased variability and a higher ceiling
for extremes by the end of the twenty-first century.

RETURN PERIODS

Every climatologically unique city displayed an increase
over HIST in one or both EOC scenario return period daily
precipitation values for 25–500 years (Fig. 8). For the compar-
ison of PRISM and HIST, PRISM was within the 95% confi-
dence interval of HIST for all return periods except in
Amarillo and Seattle where they were below and above the
95% confidence interval, respectively (Fig. 9). Seattle EOC4.5
scenario is the only city that had an EOC scenario below
HIST for all return periods examined (Figs. 8g and 9). The re-
turn period daily precipitation values for each epoch have a
95% confidence interval, which becomes large with increasing
return periods since some uncertainty of the model comes
from extrapolating the simulation record of 15 years to longer
return periods (Figs. 8 and 9). All cities except Amarillo showed
differences of less than 30% between PRISM and HIST, with
many cities below 20% (i.e., Albany, Grand Junction, Nashville,
Phoenix, and Tallahassee) (Fig. 9). Overall, even with some
biases in HIST EOC8.5 showed the most robust increases from
HIST for all return periods; EOC4.5 changes were generally
lower in magnitude but still showed modest increases.

Return periods can be complicated for communities and
stakeholders to interpret, leading to inaccurate risk assessments
and inadequate mitigation strategies. For example, a 100-yr ex-
treme daily precipitation event has a 1% chance of happening
during any given year but a 39.4% chance of occurring within
50 years. While return periods can be challenging, the 100-yr
return period of daily precipitation values is often used in in-
frastructure design to reduce impacts and is similarly used in
determining insurance premiums for the National Flood Insur-
ance Program (NFIP) (Min et al. 2011; Wright et al. 2021;
FEMA 2023).

The percent change above HIST in the EOC scenarios for
the 100-yr return period of daily precipitation values varied
for each city but was generally 20% or greater, with very large
(.50%) increases shown in Albany, Minneapolis, and Nash-
ville (Figs. 8a,d,e). Looking at larger areas, regions of the
Intermountain West, Midwest, Southeast, and Northeast all
showed increases in the 100-yr return period daily precipita-
tion values above HIST in the EOC scenarios (Figs. 10b,c). A
50% or greater increase was displayed in EOC4.5 for 4.6% of
30-km grid boxes and 12.6% of the EOC8.5 30-km grid boxes.
Regionally, the percent increases in the 100-yr return period
of daily precipitation values in the EOC scenarios were ap-
proximately 50%–100% above the HIST epoch, with higher
increases more widespread in the EOC8.5 scenario. Increases

TABLE 2. Metrics of the modeled EVA and input WRF data
for 1990–2005 PRISM and HIST and 2085–2100 EOC4.5 and
EOC8.5 epochs for eight climatologically unique cities.

PRISM HIST EOC4.5 EOC8.5

Albany, New York
r 0.977 0.939 0.985 0.908
p 0.000 0.000 0.000 0.000
RMSE 6.022 6.238 4.686 22.237
R2 0.877 0.831 0.924 0.704

Amarillo, Texas
r 0.968 0.985 0.962 0.982
p 0.000 0.000 0.000 0.000
RMSE 2.730 2.608 9.109 6.875
R2 0.920 0.966 0.821 0.915

Grand Junction, Colorado
r 0.950 0.986 0.976 0.973
p 0.000 0.000 0.000 0.000
RMSE 1.440 0.905 3.362 2.910
R2 0.903 0.949 0.879 0.889

Minneapolis, Minnesota
r 0.971 0.964 0.986 0.994
p 0.000 0.000 0.000 0.000
RMSE 8.504 6.067 7.822 3.868
R2 0.859 0.846 0.918 0.973

Nashville, Tennessee
r 0.975 0.952 0.973 0.989
p 0.000 0.000 0.000 0.000
RMSE 3.530 10.473 10.852 7.611
R2 0.950 0.815 0.887 0.951

Phoenix, Arizona
r 0.964 0.987 0.971 0.993
p 0.000 0.000 0.000 0.000
RMSE 4.286 1.922 3.205 2.448
R2 0.831 0.962 0.934 0.964

Seattle, Washington
r 0.928 0.937 0.937 0.905
p 0.000 0.000 0.000 0.000
RMSE 8.786 2.273 2.897 7.688
R2 0.756 0.874 0.832 0.701

Tallahassee, Florida
r 0.972 0.947 0.982 0.975
p 0.000 0.000 0.000 0.000
RMSE 17.702 20.572 8.892 11.307
R2 0.882 0.793 0.960 0.939
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FIG. 7. The probability density (y axis) of daily precipitation (mm) extremes (x axis) for 1990–2005
PRISM (gray) and HIST (black) and 2085–2100 EOC4.5 (orange) and EOC8.5 (red) epochs simulation
data for eight climatologically unique cities.
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FIG. 8. Return periods (x axis; years) of daily precipitation (y axis; mm) for 1990–2005 HIST (black), 2085–2100
EOC4.5 (orange), and 2085–2100 EOC8.5 (red) epochs for eight climatologically unique cities. Solid lines denote the
median modeled return period. Dashed lines indicate the 95% confidence interval (HIST is shaded) calculated using
a 1000-iteration bootstrap sample.
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in the 100-yr return period precipitation value had statistically
significant increases in EOC8.5 for areas of the Intermountain
West, Southwest, and Northeast while EOC4.5 displayed only
sporadic areas of significant increases (Figs. 10d,e). National
averages for percent change in 100-yr return period precipita-
tion values display an overall increasing trend with 18% in
EOC4.5 and 119.4% in EOC8.5 (Figs. 10d,e). These return
period precipitation value changes align with previous studies
showing increases in return period precipitation values for
most of the CONUS historically and in future simulations,

albeit with some slight magnitude variations (DeGaetano
2009; Dominguez et al. 2012; Kunkel et al. 2013a). Increases
in return period precipitation values have significant implica-
tions for infrastructure, especially considering structures cur-
rently under construction that assume historical values.

4. Discussion and conclusions

We investigated how extreme daily precipitation}defined
as the 99th percentile value in a 24-h period}may change by

FIG. 9. Return periods (5–500 years) of daily precipitation (mm) for 1990–2005 (PRISM and HIST) and 2085–2100 (EOC4.5 and
EOC8.5) for eight climatologically unique cities. The gradient represents the median of a 1000-iteration bootstrap for each city and the
brackets contain the mean and 95% confidence interval.
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the end of the twenty-first century under two anthropogenic
emissions scenarios using a novel convection-permitting dy-
namically downscaled RCM dataset with two end-of-century
(2085–2100) epochs under pathways RCP4.5 and RCP8.5
(Table 3). The representation of smaller-scale features in
RCMs permits explicit representations of hazardous convec-
tive weather, which is needed for resolving extreme daily pre-
cipitation. The simulated HIST epoch (1990–2005) of extreme
daily precipitation compared favorably with some slight biases

to an independent dataset of observations (PRISM) from the
same time period, providing confidence in the analysis of fu-
ture projections of extreme precipitation in the EOC scenar-
ios (Table 3). Results projected increasing values of extreme
daily precipitation through the end of the twenty-first century
for both RCP scenarios in many regions in the CONUS, such
as the Northeast, Midwest, Southeast, and Pacific Northwest
(Table 3). For example, the 99th percentile daily precipitation
value displayed increases greater than 20 mm in the Ohio

FIG. 10. The 100-yr return period daily precipitation values (mm) for (a) 1990–2005 HIST, with (b),(c) raw and
(d),(e) percent differences from HIST for 2085–2100 EOC4.5 and EOC8.5 epochs. Hatched areas on percent differ-
ence panels indicate regions where the median EOC epoch value was outside the HIST 95% confidence interval from
a 1000-iteration bootstrap sample. National averages for each panel are displayed in the lower left.
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Valley and Midwest (December–May). Several of these re-
gions have historically seen increasing trends that could be ex-
acerbated by anthropogenic climate change (e.g., Groisman
et al. 2005; Alexander et al. 2006; Groisman et al. 2012;
Kunkel et al. 2013a; Janssen et al. 2014; Huang et al. 2017;
Changnon and Gensini 2019; Howarth et al. 2019). On the
other hand, decreases in the 99th percentile of daily precipita-
tion were found in the southern Great Plains in December–
February. EVA further revealed an increasing ceiling for
extremes in most of the eight climatologically unique cities
examined, and daily precipitation return periods}a metric
useful for insurance and engineering}showed robust in-
creases above the 95% confidence interval of HIST by the
end of the twenty-first century for one or both EOC scenarios
in six of the eight cities examined.

Changes in the lower probability events (e.g., .100-yr re-
turn period) can have vast socioeconomic implications. The
NFIP has Special Flood Hazard Areas (SFHAs) which use a
100-yr return period for floodplains, and those within a SFHA
with a federally backed mortgage are required to have flood
insurance (FEMA 2023). The NFIP floodplains differ slightly
from the return periods calculated here since they use return
periods based on the precipitation impact rather than amount.
Both methods, however, communicate the risk associated
with extreme precipitation events such that changes in return
periods could change which locations are most vulnerable.
Our results showed increases in precipitation values for return
periods greater than 25 years in both EOC scenarios for all
cities examined except Seattle, suggesting such changes in vul-
nerability are likely to occur. These socioeconomic implica-
tions highlight the importance of future work using land use
and population projections for stakeholder awareness in
adapting to and mitigating the effects of potential future
changes in extreme precipitation.

Extreme hazards have low occurrence probabilities, yet the
largest impacts, especially in current and projected regions of
high risk and vulnerability due to increasing urbanization
(e.g., Strader and Ashley 2015; Ferguson and Ashley 2017;
Strader et al. 2017; Villarini and Slater 2017; Wing et al. 2018;
Andreadis et al. 2022). Some communities in these regions
lack the technological development and economic support to
build resilience to these rare but impactful events, highlight-
ing issues of interests, equity, and fairness in socioeconomi-
cally vulnerable areas and creating a window of opportunity
to enact rapid policy change (Bubeck et al. 2017). Infrastruc-
ture is built with the intent of withstanding extreme events,
yet precipitation extremes are projected to increase past the
historical trends for many regions of the CONUS, threatening
infrastructure survival against hazards in the future (Wright
et al. 2021). Ultimately, this study illustrates that potential
changes in extreme daily precipitation across various regions
of the CONUS have the potential to impact numerous aspects
of society by the end of the twenty-first century. Using pro-
jected changes in precipitation risk in conjunction with other
socioeconomic projections can aid stakeholders in planning
for future disasters. Future work could focus on subdaily accu-
mulation for precipitation extremes. Additionally, taking a
larger ensemble approach by using further emissions scenar-
ios, GCM members, and time slices would help discern uncer-
tainty of potential future changes in extreme precipitation.
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TABLE 3. The 99th percentile of daily precipitation HIST biases, national average and standard deviation, and statistically significant
changes across the CONUS.

December–February March–May June–August September–November

HIST biases Wet bias in the
Intermountain West,
northern Great Plains,
and Midwest

Wet bias in the
Intermountain West

Dry bias in the
Intermountain West

Sporadic dry bias in the
Southeast and wet bias
in the Intermountain
West

National
average

EOC4.5: 31.8 6 21.8 mm EOC4.5: 31.5 6 15.6 mm EOC4.5: 29.0 6 18.0 mm EOC4.5: 29.6 6 15.0 mm
EOC8.5: 34.8 6 24.1 mm EOC8.5: 32.3 6 17.6 mm EOC8.5: 27.9 6 18.1 mm EOC8.5: 30.4 6 16.2 mm

99th percentile
changes

Sporadic increases across
the Intermountain
West in both EOC
scenarios

Lower Midwest into the
Ohio River Valley
shows increases of
50%–100% in
EOC8.5

Robust decreases of
100%–150% in the
Intermountain West
in EOC8.5

Sporadic areas of
decrease in the
Southwest, northern
Great Plains, and
Southeast in EOC8.5

Ohio and Tennessee
River valleys and the
Northeast display
increases of 50%–100%

Large decreases up to
1001% in the
Southwest for EOC8.5

Sporadic decreases in
the central and
southern Great Plains
in EOC8.5

Increases of ;100% in
the central Midwest in
EOC8.5

Decreases of 50%–100%
in the southern Great
Plains in both EOC
scenarios
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