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ABSTRACT

This research is Part II of a two-part study that evaluates the ability of image-processing and select machine-

learning algorithms to detect, classify, and track midlatitude mesoscale convective systems (MCSs) in radar-

reflectivity images for the conterminous United States. This paper focuses on the tracking portion of this

framework. Tracking is completed through a two-step process using slice (snapshots of instantaneous MCS

intensity) data generated in Part I. The first step is to perform spatiotemporal matching, which associates slices

through temporally adjacent radar-reflectivity images to generate swaths, or storm tracks. When multiple slices

are found to bematches, a difference-minimization procedure is used to associate the most similar slice with the

existing swath. Once this step is completed, a second step combines swaths that are spatiotemporally close.

Tracking performance is assessed by calculating select metrics for all available swath-building perturbations to

determine the optimal approach in tracking. Frequencymaps and time series generated from the swaths suggest

that the spatiotemporal occurrence of these swaths is reasonable as determined from previous work. Further,

these events exhibit a diurnal cycle that is distinct from that of overall convection for the conterminous United

States. Last, machine-learning predictions are found to limit areas of high MCS frequency to the central and

eastern Great Plains.

1. Introduction

Mesoscale convective systems (MCSs) are thought to

produce a significant portion of warm-season precipitation

for many regions in the conterminous United States

(CONUS) (Zipser 1982; Ashley et al. 2003; Houze 2004).

Because of this, MCSs have been, and continue to be, a

popular focus for research in the fields of hydrology, cli-

matology, and meteorology (Houze 2004). To assess ob-

jectively the spatiotemporal frequency of MCSs and their

precipitation, extensive remotely sensed datasets have been

analyzed to find events that meet size, intensity, and dura-

tion criteria (Parker and Johnson 2000, henceforth PJ00).

In specific terms, PJ00 defined MCSs as areas of deep,

moist convection (DMC) organized at the mesoscale

(e.g., a horizontal extent of at least 100 km) that last at least

3 h. Translating this dynamically based definition of an

MCS into an automated detection and tracking process is

crucial because of the large size of remotely sensed datasets

(Lakshmanan and Smith 2010). The segmentation, classi-

fication, and tracking of phenomena driven by DMC

remains a challenging problem (Lakshmanan et al. 2009).

The process of objectively characterizing the fre-

quency of MCS events requires the spatiotemporal

association (‘‘matching’’) of qualifying precipitation

clusters (e.g., Haberlie and Ashley 2018, hereinafter

Part I) between temporally adjacent radar images

(‘‘storm tracking’’). This complex, but necessary, step is

complicated by the erratic evolution of precipitation

clusters (Lakshmanan and Smith 2010): clusters can

undergo many unpredictable changes between radar

images that can complicate matching decisions; these

changes include initiation, splitting, merging, and decay

(e.g., Fig. 2 in Vila et al. 2008). This study explores the

utility of using machine-learning predictions to reduce

the complexity of the matching step by removing cases

that meet the PJ00 criteria for size and intensity but are

not labeled asMCS by an ensemble of machine-learning

algorithms trained and validated using hand-labeled

data (Part I). Further, this work examines the impact

of segmentation-threshold values on resulting tracks to

determine the potential effects on automated MCS

‘‘climatologies.’’
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Thediscussion hereinwill focus on the tracking portion of

an MCS segmentation, classification, and tracking frame-

work introduced in Part I, as well as examples of applying

the framework.Themain contributionsof this paper include

1) an objective and subjective assessment of the effect of

segmentation parameters and probabilistic classifications on

MCS tracking performance, 2) a demonstration of the in-

fluence of segmentation parameters and probabilistic clas-

sification thresholds on the spatial frequency and statistical

attributes of MCS events, and 3) a statistical description of

a novel, manually labeled, dataset of radar-derived MCS

events from the 2015 and 2016 warm seasons (May–

September). An important finding discussed in Part I is that

machine learning can be used to generate reliable classifi-

cation probabilities for detected convective clusters in

composite reflectivity images. To be specific, evidence is

presented that suggests select machine-learning algorithms

can probabilistically distinguish between MCS and non-

MCS (i.e., tropical systems, synoptic systems, and un-

organized clusters) convective precipitation areas. This

work builds on those findings by illustrating and discussing

the utility of these predictions by testing various probability

thresholds to balance the removal of false-positive clusters

with the inclusion of true-positive cases. Although the

application of this approach may be limited for general-

purpose storm-tracking algorithms, the complexity of

identifying and tracking specific meteorological phenom-

ena can be reduced by using this framework to limit the

influence of false-positive events on climatologies, case

studies, and other products. Case studies for select events,

as well as 2015 and 2016 warm-season MCS frequency

maps, are used to demonstrate the utility of the framework.

2. Background

Using remotely sensed data, previous research has either

implicitly or explicitly trackedMCSoccurrence (Fritsch and

Forbes 2001; Houze 2004). Implicit approaches use ag-

gregate rainfall products (stage-IV mosaics, Hovmöller
diagrams, etc.) to find contiguous ‘‘precipitation ob-

jects’’ (e.g., Davis et al. 2006) of sufficient width and

duration (Carbone et al. 2002; Hitchens et al. 2012; Pinto

et al. 2015). Explicit tracking, on the other hand, extracts

contiguous precipitation clusters from each image (e.g.,

every 15 min), with the added complexity of associating

these clusters through time. Although this approach is

more computationally expensive, it allows for a more

rigorous examination of MCSs at fine temporal scales

and is analogous to more-formal definitions of MCSs.

Despite the opportunities that automated methods

provide, explicit storm-tracking procedures have known

issues with identifying (segmentation) and associating

precipitation clusters between time steps (tracking),

especially when handling splitting and merging events

(Lakshmanan and Smith 2010). Workable solutions to

these issues exist in the form of tweaking detection

and tracking parameters to correct poor tracking

behavior on the basis of case studies or summary

statistics (Lakshmanan and Smith 2010).

During an MCS-tracking process, slices—instantaneous

snapshots of the geographic distribution of contiguous re-

gions of precipitation—and swaths—the progression of

slices over time—are generated (Fig. 1). For a slice to be

considered for the swath-building process (i.e., a candidate

MCS slice), it must contain a region of contiguous or

semicontiguous convective precipitation ($40dBZ) with a

horizontal dimension exceeding 100 km (PJ00; Part I).

These regions, defined asMCS cores (e.g., label i in Fig. 1),

are generated by spatially aggregating convective cells that

contain intense precipitation ($50dBZ) that are within a

given distance of one another. Nearby areas of pre-

cipitation are associated with MCS cores to generate can-

didate MCS slices (e.g., label ii in Fig. 1). These areas of

convection and stratiform precipitation from temporally

adjacent radar images are then spatiotemporally associated

to generate swaths (label iii in Fig. 1). This study further

restricts the MCS-slice detection (and ultimately the

swath building) by using probabilistic machine-learning

predictions (PMCS; see Part I) to remove certain candi-

date MCS slices. This is done using an ensemble classifier,

containing trained random-forest (Breiman 2001; scikit-

learn 0.18 software, Pedregosa et al. 2011), gradient-boosting

(scikit-learn 0.18; Pedregosa et al. 2011), and XGBoost

(xgboost-python 0.6 software; Chen and Guestrin 2016)

classifiers, to predict the likelihood that each detected slice

is a candidate MCS slice. For a detailed explanation of how

these classifiers were generated and tested, see Part I. Ex-

amples of candidateMCS slices that are likely to have a low

PMCS are tropical systems, synoptic systems with embedded

convection, and unorganized convective clusters (Part I).

There are several ways to track storm cells in a clima-

tological context. Twowidely used approaches are centroid

matching (Lakshmanan et al. 2015) and spatiotemporal

object building [Skok et al. (2009); Method for Object-

Based Diagnostic Evaluation–time domain (MODE-TD);

Clark et al. (2014)]. Both procedures use the concept of

postevent tracking (Lakshmanan et al. 2015), which, in

contrast to real-time storm tracking [e.g., Storm Cell

Identification and Tracking (SCIT); Johnson et al. 1998],

uses full event histories within the climatological record to

generate more accurate storm tracks (e.g., Fig. 6 of

Lakshmanan et al. 2015). Spatiotemporal object building is

generally used for objects at the scale ofMCSs (Clark et al.

2014), whereas centroid matching is generally used for

tracking objects on the scale of supercells (Gagne et al.

2017). One disadvantage to spatiotemporal object building
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is that the merging (splitting) of multiple, unique, objects

will result in a single, overly expansive, storm swath (Skok

et al. 2009). For example, Chang et al. (2016) illustrate the

‘‘chaining effect’’ in which small, short-lived cells can in-

correctly combine two unique regions of precipitation

during the segmentation process. As an alternative, spa-

tiotemporal overlap tracking (Lakshmanan et al. 2009) can

be used to apply the spatiotemporal object-building pro-

cedure only to storms that spatially overlap between two

adjacent radar images.Although tracking using the overlap

criteria is thought to be overly conservative in many cases,

its performance is similar to, or better than, more complex

techniques for objects at the scale of MCSs (Lakshmanan

and Smith 2010).

3. Data

The data generated for this study are extracted

from the 5-min-temporal-resolution, approximately

2-km-spatial-resolution, National Operational Weather

Radar (NOWrad; see Fabry et al. 2017) product, which

is a CONUS-wide composite reflectivity mosaic. As in

Part I, simplified pixel lengths and areas are defined as

2km and 4km2, respectively. Each pixel value represents

the instantaneous precipitation rate for the grid’s

location, and values are constrained to a range of 4-bit

numbers (0–16) representing bins of 5 dBZ from 0 to 80.

As in Part I, values representing 20–35 dBZ are labeled

as stratiform, those between 40 and 45 dBZ are labeled

as convection, and values of 50 dBZ and greater are la-

beled as intense. These data have been used in several

studies that produced and examined climatologies of

convection (Fabry et al. 2017). Since the mosaics are

generated from NEXRAD reflectivity, the caveats as-

sociated with those data are also transferred to the raw

data used to generate the product (Smith et al. 1996).

Such issues include anomalous propagation, false ech-

oes, attenuation, and other spurious signals relating to

the curvature of the Earth and atmospheric conditions.

To systematically reduce the occurrence of these prob-

lems, the data are initially quality controlled before

they are released (Carbone et al. 2002). This work

examines the data in 15-min intervals to reduce

processing time.

MCS slices generated in Part I are used in this study to

buildMCS swaths. These data include geographic, intensity,

and feature information (see Table 3 in Part I). A total of 48

perturbations were generated to test the sensitivity of the

swath-building procedure, including 1) four different search

radii for connecting convective cells [convective-region

FIG. 1. Manually generated MCS swaths from 0000 to 1700 UTC 7 Jun 2015. The labeled

areas include MCS cores (label i; heavy black outlines), MCS slices (label ii; shaded fill), and

MCS swaths (label iii; thin gray outlines). Included are centroid tracks (2-h mean position;

white line with black outline) for the two MCS swaths and their MCS slices at 0300, 1000, and

1600 UTC. Centroid paths are included only for visualization purposes.
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search radius (CRSR)]; 2) three different search radii for

connecting stratiform regions to qualifying convective re-

gions [stratiform search radius (SSR)]; and 3) four different

PMCS thresholds. In total, 742242 slices were generated for

the period of May–September in 2015 and 773702 slices

were generated for the same months in 2016. Each slice is

saved as a lossless, 8-bit, portable network graphics (PNG)

image and is indexed within a comma-separated-values

(CSV) file, from which attributes such as geographic in-

formation, file location, slice features, and PMCS can be

queried to generate analyses. These files are available online

(https://github.com/ahaberlie/MCS/).

4. Tracking

a. Overview

An important part of the PJ00 definition is that the

organization of DMC at a larger scale than an individual

updraft must persist long enough for mesoscale circu-

lations to form. Because of this stipulation, studies that

have tracked MCSs in remotely sensed data have

required 1) that slices that meet size and intensity

requirements must be spatiotemporally associated be-

tween time steps and 2) that these associations (i.e.,

swaths) must exist for a minimum amount of time (e.g.,

Table 1 in Part I). There are several explicit tracking

approaches that can be used to generate spatiotemporal

associations between MCS slices (e.g., Lakshmanan and

Smith 2010, p. 703). The goal of tracking for this study is

to spatiotemporally associate candidate MCS slices for

the purpose of generating a database ofMCS swaths that

contain intensity, spatial, and temporal information.

These swaths can then be queried, extracted, and ana-

lyzed for research applications.

Because there are 48 combinations of CRSR, SSR,

and the probability that a slice is a part of an MCS

(PMCS), determining the differences (if any) between

each perturbation could help to inform an optimal

segmentation choice in the context of swath building

(see Part I for more information on these values).

Lakshmanan and Smith (2010) provides a framework

for assessing the performance of storm-tracking algo-

rithms by using summary statistics from all available

swaths. They suggest that, in general, the relative per-

formance of a storm-tracking approach can be de-

termined by answering the following three questions: 1)

How long do tracks typically last? 2) How variable is the

intensity of the affiliated precipitation within the tracks?

3) How linear are the tracks? This approach to evalu-

ating storm-tracking algorithms is suggested over track-

by-track verification for large datasets (Lakshmanan and

Smith 2010; Fiolleau and Roca 2013; Houston et al. 2015).

The goal of using this assessment approach is not to

create a general-purpose storm-tracking algorithm but

rather to examine the relative performance between the

available perturbations.

b. Approach

The tracking procedure uses two open-source pack-

ages in the Python programming language: ‘‘pandas/

geopandas’’ (0.20.3/0.2.1; McKinney 2010) and ‘‘shapely’’

(1.5.17). First, slice-feature information for all of the slices

from 2015 and 2016 is read into a pandas ‘‘Dataframe.’’

For each of the 48 perturbations, a query is used to select

only those slices that are associated with each CRSR,

SSR, and PMCS value. Saved images associated with the

resulting slices are then loaded into memory, and the

locations of pixels exceeding 50dBZ (intense) are used to

generate a convex hull. The resulting shapely polygon

approximates the MCS core and usually takes much less

memory to store than do points for each pixel location.

The polygon is then inserted into a geopandasDataframe

and associated with its affiliated slice.

For each 15-min period for May–September in 2015

(and again for the same period in 2016), slices are se-

lected for the current and next time steps. The matching

procedure then builds a two-dimensional matrix in

which each row represents a slice within an existing

track at the current time step and each column is an

unmatched slice at the next time step. The similarity

between the slices is calculated and is inserted into the

affiliated cell. Similarity (normalized difference) is cal-

culated by first dividing the feature values (see Table 3 in

Part I) in each slice by the maximum value for each

feature and then finding the 14-dimensional Euclidean

distance between two slice features. This process is

simplified by only calculating the similarity of over-

lapping slices and assigning a null value to all cells that

are affiliated with slices that do not overlap each other.

Then, until all values are null, the procedure finds the

lowest value (highest similarity) and associates the un-

matched slice with the track number affiliated with the

slice at the current time step. Cells that represent

matches are then set to null. All unmatched slices at the

next time step are then considered to be new tracks and

are assigned a new storm number. If only one overlap is

found, the method behaves as a simple-overlap match-

ing approach. If more than one overlap is found, the

most similar slice is chosen to be associated with

the existing track. This matching process is called the

Hungarian method (Munkres 1957) and has been used

in many storm-tracking algorithms (Dixon and Wiener

1993; Han et al. 2009; Lakshmanan et al. 2013; Gagne

et al. 2017). A merging event at 0430 UTC 7 June 2015

can be used as an example of the Hungarian method
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(Fig. 2). At 0400 UTC 7 June 2015, two distinct MCS

swaths are ongoing in the upper-midwestern CONUS.

At 0415 UTC 7 June 2015, the segmentation process

determines that there are still two unique slices (labels i

and ii in Fig. 2), resulting in a straightforward matching

decision using spatiotemporal overlap only (Table 1).

In the next radar image, however, the segmentation

process determines that the two slices have merged

(label iii in Fig. 2) and, thus, that only one slice at

0430 UTC overlaps with the two at 0415 UTC. In this

case, the matching decision is determined by associating

the two most similar slices (Table 2), and the southern-

most slice is matched with the merged slice. Although

this combination produced the lowest normalized

difference of the available choices (Table 2), this

value was roughly 10 times as large as the value for its

previous, straightforward, match at 0415 UTC (Table 1).

This is a result of the merging of the northern slice (Fig. 2,

label i) and the southern slice (Fig. 2, label ii) and the af-

filiated modification of feature values.

FIG. 2. Example of a merging case at 0430 UTC 7 Jun 2015. The black contours (labeled

by i and ii) represent the stratiform precipitation extent of two slices associated with unique

swaths at 0415 UTC 7 Jun 2015. Since both overlap with the single slice at 0430 UTC (label

iii), the most similar slice retains its track, whereas the track associated with the least

similar slice is discontinued. In this case, the southernmost slice (label ii) is most similar to

the new, merged, slice (label iii). Centroid paths are included only for visualization

purposes.

TABLE 1. Normalized differences between existing slices at 0400

UTC (Si and Sii) and new slices at 0415UTC (N1–N3) for 7 Jun 2015

(see Fig. 2). Normalized differences that are denoted with an as-

terisk are winning matches. For example, slice Si is matched with

new sliceN1. Em dashes in a cell denote that the new slices did not

overlap with the corresponding existing slice. Note that N3 is in-

cluded as a case in which a new slice does not overlap with any

existing slice.

N1 N2 N3

Si 0.049* — —

Sii — 0.195* —
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c. Performance assessment

1) SUBJECTIVE ASSESSMENT

Forty-eight different tracking outputs using the same

underlying slice data are generated by the process de-

scribed in section 4b. Subjective assessment of the

tracking algorithm is performed on many known MCS

cases, of which three cases are included in this paper: 1) a

merging event between twoMCSs, taking place between

0000 and 1700 UTC 7 June 2015, 2) a back-building

(Maddox et al. 1979) MCS that occurred between 2200

UTC 24 June 2015 and 1800 UTC 25 June 2015, and 3) a

derecho-producing (Johns and Hirt 1987; Corfidi et al.

2016) MCS that occurred between 0000 and 2300

UTC 22 June 2015. These cases do not represent the

entire spectrum of possible morphologies and evolu-

tions, but they are useful to subjectively demonstrate the

strengths and weaknesses of the MCS segmentation,

classification, and tracking procedure described in this

paper and in Part I.

(i) 7 June 2015

At the beginning of this period (0000 UTC), several

regions of relatively isolated DMC are ongoing over

northeastern Nebraska, eastern South Dakota, and west-

ern Minnesota. By 0300 UTC, upscale growth and linear

organization of the initially isolated DMC occurs in east-

central Minnesota and in eastern Nebraska and western

Iowa. As these linearly shaped regions of DMC (and as-

sociated stratiformprecipitation) propagate eastward, they

begin to undergo a merger (e.g., Foilleau and Roca 2013).

This process occurs between 0400 and 0800UTC in eastern

Minnesota and Iowa and is denoted by the spatial meshing

of two distinct stratiform rainfall shields, eventually fol-

lowed by the combining of two distinct lines of DMC. At

1000UTC, themerger is complete and the linearDMChas

visual characteristics in radar images that are consistent

with a mature MCS (‘‘trailing stratiform’’ morphology;

PJ00). After 1200 UTC, the linear DMC begins to lose

intensity; by 1700 UTC, much of the convective pre-

cipitation has dissipated as it moves into eastern Illinois

and northwestern Indiana.

The evolution of this MCS is manually tracked by

circling MCS slices in composite reflectivity mosaic im-

ages every 15 min in a manner consistent with how

training and testing samples were gathered for Part I.

TheseMCS slices are automatically combined intoMCS

swaths, and the output from this procedure is illustrated

in Fig. 1. Results from this manual approach reflect what

is described in the previous paragraph: 1) swaths begin

where the DMC first took on MCS-like characteristics,

2) one track ends in central Minnesota (Fig. 1, label i),

whereas another experiences a northward jump but

continues eastward (Fig. 1, label ii); and 3) the main

MCS swath path ends in eastern Illinois. Output from

the automated approaches generally agrees with that

generated by the manual approach (Fig. 3). In Fig. 3, the

effects of various CRSR and SSR values are illustrated

to assess subjectively the general performance of

four select perturbations. In addition to illustrating the

effect of varied search-radius values, the effect of var-

ied minimum PMCS per swath is demonstrated by using

different-shaded centroid paths. These paths are only

used for visualization purposes, because the actual

‘‘track’’ is the spatial coverage of a slice within the MCS

swath at any given time.

In all of the cases, the MCS swaths generated by using

all qualifying slices (PMCS of 0.0) produce a centroid

path that resembles that of the manual swaths (Fig. 1).

When increasing the minimum PMCS per swath, the

paths begin to diverge from the manual path. For ex-

ample, in all of the included cases in Fig. 3, the northern

MCS swath (Fig. 1, label i) does not qualify as an MCS

when using strict PMCS thresholds of 0.90 and 0.95. This

is likely due to the relatively small size of the convective

and intense precipitation within the slices belonging to

this MCS swath. The termination point for this MCS

swath is reasonable, however, because it becomes

merged with the southern MCS (Fig. 1, label ii) in

eastern Minnesota in all four cases. One discrepancy

between the manual swaths and the swaths generated

for the northern MCS swath is its premature cessation

in the automated approach that limits its southern and

eastward extent. For the situation depicted in Fig. 3a, a

short-lived swath between the northern and south-

ern MCSs in southeastern Minnesota is identified at

0430 UTC. This swath and the northern MCS swath

merge at 0500UTC, at which point thematching process

determines that the merged slice is the continuation of

the short-lived swath. This merged swath continues until

it merges with the southern MCS at 0545 UTC. For the

situations depicted in Figs. 3b–d, the aforementioned

short-lived swath depicted in Fig. 3a is instead attached

to the southern MCS. This attachment causes a pre-

maturemerger between the northern and southernMCS

TABLE 2. As in Table 1, but between existing slices at 0415

UTC and new slices at 0430 UTC (see Fig. 2). In this example, slice

Sii is matched with new sliceN1. In this case,N1 is not matched with

Si; this is because the normalized difference between these two

slices is greater than that of the normalized difference between Sii
and N1.

N1 N2 N3

Si 1.384 — —

Sii 0.495* — —
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swaths at 0430 UTC for Figs. 3b and 3c and at 0400

UTC for Fig. 3d. These difficulties demonstrate the

trade-offs among different values of SSR, CRSR, and

minimum PMCS, which can result in spurious swaths and

incorrect disconnects and linkages. For example, the

beginning of the track in Fig. 3a is incorrectly split into

two tracks at 0200 UTC. This is caused by a small SSR,

which allows a gap between two MCS core regions, re-

sulting in two unique slices. In a similar way, around

0400 UTC a swath in eastern Minnesota is incor-

rectly identified between the northern and southern

MCS swaths. In Fig. 3d, the swath for PMCS of 0.95

experiences a spurious disconnect in southeastern

Minnesota that is caused by a 30-min period in which the

merged swath does not exceed the PMCS threshold. The

southwestward direction of the track for PMCS of 0.90 in

Fig. 3d reflects the splitting of the northern area of

stratiform from the southern area of decaying convec-

tion. As the swath moves into eastern Wisconsin and

northern Illinois, the higher-PMCS swaths are lost,

whereas the path for PMCS of 0.00 is retained. This result

is caused by the combination of the decay of the MCS

FIG. 3. The effects of modifying CRSR, SSR, andMCS probability thresholds on resultingMCS cores,MCS slices, andMCS swaths (see

Fig. 1) and their affiliated centroid paths (2-h mean position) from 0000 to 1700 UTC 7 Jun 2015. Pictured areMCS slices from 0300, 1000,

and 1600 UTC for each swath that lasted for at least 3 h. Also shown are tracks composed of slices meeting or exceeding an MCS

probability of 0.90 that last at least 0.5 h. The different-shaded centroid tracks represent swaths generated by using only those slices that

are assigned an MCS-label probability exceeding 0.00 (white), 0.50 (light gray), 0.90 (dark gray), or 0.95 (black). MCS core boundaries

(black outlines) are plotted at 1000 UTC. The CRSR/SSR combinations are as follows, respectively: (a) 6/48, (b) 12/96, (c) 24/96, and

d) 48 km/192 km. Centroid paths are included only for visualization purposes.
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and the inclusion of a broad area of stratiform pre-

cipitation that reduces the PMCS values of the slices. The

higher-PMCS swaths in Fig. 3d return in eastern Illinois

and northwestern Indiana when the northern region of

stratiform is ‘‘detached’’ and is no longer associated with

the swath. In contrast, for the tracks in Figs. 3a–c there

are fewer stratiform pixels included within the slice and

thus the premature track cessation is eliminated and the

tracks are continuous.

(ii) 24–25 June 2015

During the evening and overnight hours of 24 and

25 June 2015, an MCS developed over Iowa and ex-

panded eastward into northern Illinois [see Peters et al.

(2017) for an in-depth discussion of this event]. Key fea-

tures in the life cycle of this MCS included 1) the upscale

growth of a loosely connected line of supercells into a

southeastward-propagating bow echo from approxi-

mately 2300 to 0200 UTC, 2) back-building (Maddox

et al. 1979) convection, resulting in a nearly stationary

western flank of the MCS, despite the southeastward

propagation of the eastern flank, from approximately

0200 to 1100 UTC, and 3) the splitting (e.g., Fig. 2 in Vila

et al. 2008) of the region associated with a propagating

linear segment from the region associated with weaken-

ing, quasi-stationary, convection around 1100 UTC. The

event ends with the dissipation of the western and eastern

regions of organized convection at approximately 1300

and 1500 UTC, respectively.

The swaths generated by the automated tracking

procedure (Fig. 4a) match up well with the manual track

(not shown). As in Fig. 3, the PMCS thresholds of 0.0 and

0.5 produce a track that extends from central Iowa

southeastward into central Indiana and western Ohio.

The swath for PMCS of 0.95 starts near the swath for

PMCS of 0.5 but ends approximately 100 km sooner at the

Ohio and Indiana border. A splitting event (not shown)

occurs between 1030 and 1045 UTC for PMCS levels of

0.0, 0.5, 0.90 and 0.95, and the Hungarian method selects

the slice over Indiana as the continuation of the swath

that originated in Iowa. The southwestern slice forms

a new swath that persists for approximately 2 h until

1230 UTC, appearing in Fig. 4a as the relatively short

centroid paths for PMCS of 0.90 and 0.95 in northeastern

Missouri. The continuation of the original swath persists

until around 1800 UTC, at which time it dissipates for all

PMCS values.

(iii) 22 June 2015

This period begins at 0000 UTC with two areas of

linear DMC—a result of upscale growth by isolated

DMC that developed during the late afternoon. By 0300

UTC, the northern and southern areas of DMC merged

in southeastern NorthDakota and exhibited two bowing

segments (Przybylinski 1995) within the contiguous

stratiform shield. The bowing segments, and their affil-

iated intense precipitation, dissipate by 0500 UTC as

the MCS moves into western Minnesota. Farther west,

multiple clusters of DMC develop concurrently in

southwestern North Dakota and western and central

South Dakota from 0400 to 0700 UTC. After 0800 UTC,

these areas of DMC merge into a single MCS in south-

eastern South Dakota. Between 0800 and 1500 UTC the

MCS took on a leading-line, trailing-stratiform (PJ00)

appearance on radar before weakening as it approached

Lake Michigan by 1700 UTC. The MCS then dissipated

around 2100 UTC over eastern Michigan. This MCS

produced wind damage and tornadoes from northern

Iowa eastward into southern Michigan.

For this event, the tracking procedure produced two

MCS swaths (Fig. 4b). The first swath is associated with

the initial area of linearly organized DMC in northern

and central North Dakota. Two regions of linear DMC

merged by 0215 UTC in eastern North Dakota, with

the southern, short-lived swath plotted in south-central

North Dakota (PMCS of 0.90 and 0.95) between the

centroid paths of the two main MCS swaths. The initial

MCS swath dissipates and merges with the second MCS

swath around 0600 UTC. This swath then moves over

Minnesota, Iowa, Wisconsin, Illinois, and Michigan be-

fore dissipating around 2300 UTC. Similar to some of

the previous examples, the swaths for PMCS of 0.00, 0.50,

and 0.90 form a contiguous path from North Dakota to

eastern Michigan. The PMCS-0.95 swath initially forms a

continuous path from North Dakota to western Michi-

gan by 1800 UTC; after this time, the path only in-

termittently shows up over Michigan before the system

dissipates around 2300 UTC. This lack of swath co-

hesion coincides with the visual appearance of weak-

ening by the MCS as was previously noted in the

subjective assessment of the event.

(iv) Intermittent swaths

In the previous three examples, there were cases in

which the spatiotemporal matching procedure failed to

create contiguous swaths. This was particularly true

when the PMCS threshold exceeded 0.95. Although the

goal of using higher probabilistic thresholds is to reduce

the inclusion of non-MCS events, these cases suggest

that this approach may also be removing, truncating, or

splitting legitimate MCS swaths. We hypothesize that

this is caused by periodic reductions in the PMCS value

for slices that cause them not to be included in a

spatiotemporal matching run that only considers slices

that exceed, say, PMCS of 0.95. Because the matching

procedure only examines the current period and the
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next 15-min period, if a slice fails to exceed a threshold

value in one radar image then the track is ended.

One way to address this issue is to reanalyze the track

database to connect previously unconnected tracks. This

method is demonstrated by Lakshmanan et al. (2015),

who provided evidence that it resulted in more contig-

uous tracks (see their Fig. 6). The current study uses a

similar approach. Namely, the goal is to attempt to con-

nect the end of swaths that contain at least two slices

(30-min duration) to the beginning of swaths with at least

two slices. To find suitable matches, the following condi-

tions must be met: 1) the start of the matching candidate

swath must not exceed 60 min from the time that the

previous swath ended and 2) the first slice of thematching

candidate swath must either overlap or be within 100 km

of the last slice in the previous swath. This process is

illustrated on two previously discussed examples from

7 and 22 June 2015 (Fig. 5). In Fig. 5a, the reanalyzed

swaths exhibit a more contiguous track for all PMCS

thresholds—at least until the MCS moves into eastern

Wisconsin, whereas the original swaths (with the same

CRSR and SSR) in Fig. 3d display a swath discontinuity

in southeastern Minnesota for PMCS of 0.95. In Fig. 5b,

the reanalyzed swaths improve on the original swaths

in Fig. 4b by producing one contiguous swath for PMCS

of 0.95.

2) OBJECTIVE ASSESSMENT

Objective assessment of the tracking performance

was achieved by calculating and comparing select sum-

mary statistics for reanalyzed swaths generated by each

perturbation (Lakshmanan and Smith 2010). Namely,

FIG. 4. Example output of slice, swath, and swath-centroid track from select periods and

regions during June of 2015: (a) 2300–1800UTC 24–25 Jun and (b) 0000–2300UTC 22 Jun. The

shades for the swath-centroid track, representing the minimumMCS probability per swath, are

the same as described in Fig. 3. The CRSR chosen for these maps is 24 km, and the SSR is

96 km. Swaths are included on the basis of criteria in Fig. 3. Centroid paths are included only for

visualization purposes.
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duration, standard deviation of reflectivity, and linearity

error were calculated for each swath, and the average

values for each perturbation are compared. The dura-

tion of each swath is calculated by finding the temporal

difference between its last slice and its first slice. The

standard deviation of reflectivity is calculated by using

all nonzero pixel values in each slice within an MCS

swath. The linearity error is calculated by first fitting a

line to all slice centroids within a swath (using scikit-

learn’s ‘‘LinearRegression’’) and then finding the root-

mean-square error between points on that line and

observed centroids. The best-performing perturbation,

according to Lakshmanan and Smith (2010), is the

one with the longest mean duration, lowest mean stan-

dard deviation of reflectivity, and lowest mean linear-

ity error. To assess quantitatively the best-performing

FIG. 5. Example output of slice, swath, and swath-centroid track using reanalyzed tracks from

select periods and regions: (a) 0000–1700 UTC 7 Jun and (b) 0000–2300 UTC 22 Jun. The

shades for the swath-centroid track, representing the minimumMCS probability per swath, are

the same as described in Fig. 3. The CRSR and SSR chosen for these maps are (a) 48 and

192 km, respectively, and (b) 24 and 96 km, respectively. Pictured are MCS slices from 0300,

1000, and 1600 UTC for each swath that lasted for at least 3 h. Swaths are included on the basis

of criteria in Fig. 3. Centroid paths are included only for visualization purposes.
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perturbation, a total normalized error metric is cal-

culated by finding the normalized sum of the means

for linearity error, intensity error, and negative

duration.

Counts of MCS swaths—swaths that last at least 3 h—

vary from 277 to 2087 over the 5-month period in 2015

and from 316 to 2173 in 2016 (Tables 3 and 4). Swath

counts decrease as the PMCS threshold increases, with a

mean of 1361 swaths for all PMCS-0.00 perturbations and

438 swaths for all PMCS-0.95 perturbations in 2015.

Counts in 2016 exhibited a similar decrease, with values

of 1423 and 456. As a comparison, Pinto et al. (2015)

identified 837 and 929 MCSs during June–August in

2012 and 2013, respectively. During the same months in

2015, this study identified between 202 and 1456 MCS

swaths (197 and 1552 in 2016), depending greatly on the

PMCS that was used. This disparity is likely caused by the

different methodological approaches used, specifically

as they relate to segmentation. For example, in Fig. 7 in

Pinto et al. (2015), the three outlined clusters in North

Dakota, South Dakota, Wyoming, and Montana would

be considered part of the same MCS slice in this study

(depending on the combination of CRSR and SSR).

Further, Pinto et al. (2015) state that their intention was

to include ‘‘less organized convective areas’’ that are

common in the southeastern United States. As illus-

trated in Part I, using a higher PMCS results in fewer

available slices in this region and, thus, fewer MCS

swaths. Also, as the PMCS threshold increases, the per-

centage of qualifying slices that are part of an MCS

swath also increases. This suggests that slices with higher

PMCS are more likely to be within a long-lasting swath

TABLE 3. The effects of varying CRSR, SRS, and minimum MCS probability threshold (0.0, 0.5, 0.9, or 0.95) on the count of MCS

swaths, count of slices within MCS swaths, and the percentage of slices that are contained within MCS swaths. To qualify, an MCS swath

must last at least 3 h.

$0.0 $0.5 $0.9 $0.95

CRSR (km) SSR (km) Swaths Slices % Swaths Slices % Swaths Slices % Swaths Slices %

6 48 955 23 988 55 520 13 851 66 323 8506 68 277 7084 66

6 96 885 23 773 58 591 16 955 68 463 13 187 72 413 11 583 72

6 192 837 23 580 59 605 17 490 69 501 13 739 71 444 11 865 71

12 48 1182 30 224 56 588 15 978 68 376 10 265 71 329 8693 69

12 96 1071 29 475 57 664 19 497 69 514 14 890 73 448 12 803 73

12 192 1033 29 241 59 677 19 732 69 561 15 239 72 461 12 619 71

24 48 1581 40 552 58 653 18 793 70 442 12 500 73 388 10 687 72

24 96 1469 39 686 59 774 22 886 72 580 17 113 75 503 14 287 74

24 192 1414 39 224 60 793 22 999 72 591 16 697 73 492 13 450 71

48 48 2087 54 239 61 726 21 837 72 537 15 254 75 461 12 315 73

48 96 1946 52 904 62 798 25 688 73 639 18 655 75 533 14 802 75

48 192 1877 52 045 62 841 25 613 73 636 17 746 73 507 13 402 72

Mean 1361 36 578 59 686 20 110 70 514 14 483 73 438 11 966 72

Std dev 417 11 129 2 97 3603 2 94 2899 2 72 2146 2

TABLE 4. As in Table 3, but for 2016.

$0.0 $0.5 $0.9 $0.95

CRSR (km) SSR (km) Swaths Slices % Swaths Slices % Swaths Slices % Swaths Slices %

6 48 971 24 719 55 534 14 661 67 349 9528 72 316 8134 71

6 96 884 24 622 58 608 18 037 68 475 14 116 73 434 12 396 73

6 192 834 24 332 59 598 18 335 69 504 14 761 72 470 13 024 73

12 48 1240 31 574 56 590 16 789 68 390 11 109 73 334 9408 71

12 96 1129 30 776 58 686 20 512 70 515 15 833 74 477 13 887 75

12 192 1070 30 347 59 681 20 845 70 553 16 143 72 489 13 782 72

24 48 1657 42 613 58 664 19 676 70 462 13 541 75 412 11 629 74

24 96 1562 41 767 59 775 23 756 72 578 17 803 75 502 15 131 75

24 192 1510 41 089 60 795 24 005 72 628 17 996 74 532 14 803 73

48 48 2173 56 683 61 749 22 668 72 550 16 077 76 457 12 977 74

48 96 2040 55 438 62 841 22 861 73 650 19 461 75 526 15 430 74

48 192 2006 54 914 62 871 27 122 73 640 18 683 72 525 14 390 71

Mean 1423 38 240 59 699 20 772 70 525 15 421 73 456 12 916 73

Std dev 452 11 824 2 103 3 361 2 91 2878 1 68 2156 1
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and that not all slices that meet the objective PJ00 cri-

teria belong to an MCS swath.

In general, swaths that were generated using only

those slices that had a PMCS of at least 0.50 and that

lasted at least 0.5 h had longer durations than swaths that

used all qualifying slices (Tables 5 and 6; Fig. 6). Swaths

from 2015 built using all qualifying slices had mean du-

rations ranging from 2.90 to 3.33 h (from 2.84 to 3.36 h in

2016), which increased as the CRSR and SSR values

increased. In comparison, swaths built using only slices

with a PMCS of 0.50 or greater had mean durations

ranging from 3.64 to 4.49 h (from 3.77 to 4.44 h in 2016),

with a mean increase of around 55 min (61 min in 2016)

over the PMCS-0.00 swaths. Swath durations were max-

imized when using a PMCS threshold of 0.90, with a mean

duration exceeding 4 h for both years. Because of the

relatively low probability of false detection enforced by

the minimum PMCS of 0.95, slices with attributes that

deviate slightly from those of slices used to train the

classifiers are disqualified from the matching process,

resulting in a slight decrease in duration from a PMCS of

0.90 for 2015 and 2016. As a result, it is more likely

that the spatiotemporal overlap procedure will fail to

produce a match. Despite this, results from two-sample

Kolmogorov–Smirnov (KS) tests (Kolmogorov 1933)

suggest that the swath reanalysis led to significantly

different duration distributions for all perturbations

(significance level p , 0.001). In addition to the in-

creases in mean and median values for all perturba-

tions, these differences in distribution characteristics

are likely due to reanalyzed swaths with longer dura-

tions. Mean duration increases after the reanalysis

range from 0.91 to 1.69 h.

The per-swath standard deviation of reflectivity (in-

tensity error) for swaths lasting at least 1 h ranged from

7.89 to 8.88 dBZ in 2015 and from 7.97 to 8.97 km in

2016 (Tables 5 and 6; Fig. 7). There was not much vari-

ation in the means or medians of this metric among the

various perturbations, but there was a marked difference

in the variability among the four PMCS thresholds. For a

PMCS threshold of 0.00, the range from the 5th to 95th

percentile was from 6 to 12dBZ for both 2015 and 2016.

In contrast, swaths using a PMCS threshold of 0.95 had a

range as small as 7–10dBZ for both years. This suggests

that the lower PMCS thresholds may be capturing more

events with unusually high and unusually low variability

in reflectivity. This could be explained by the disqualifi-

cation of small convective clusters (high reflectivity var-

iability) and larger, more synoptic, rainfall clusters (low

reflectivity variability) with an increasing PMCS thresh-

old. When comparing the distribution of intensity error

in prereanalysis and postreanalysis swaths, results

from two-sample KS tests suggested that there were

no significant (p , 0.001) differences for any of the

perturbations.

Mean linear error for swaths lasting at least 1 h ranged

from 21.88 to 33.48 km in 2015 and 21.62 to 34.72 km in

2016 (Tables 5 and 6; Fig. 8). In general, these values

increased as CRSR, SSR, and PMCS increased, with the

lowest mean linear error belonging to swaths with slices

built using a CRSR of 6 km, an SSR of 48 km, and a

PMCS threshold of 0.00. For the CRSR and SSR, the

chaotic nature of stratiform and convective precipitation

can result in unpredictable ‘‘chaining’’ (Chang et al.

2016) between radar images (Houston et al. 2015). A

merging event, for example, can shift the swath centroid

TABLE 5. Select summary statistics for each of the 48 combinations of CRSR (km), SSR (km), andminimumMCS probability threshold

(0.0, 0.5, 0.9, or 0.95) per swath for May–September in 2015. Included statistics are mean per swath: duration (labeled Dur; h), 2) standard

deviation of reflectivity (StdDev; dBZ), mean linearity error (LinErr; km), and normalized total error (NorErr). The boldface cells denote

the lowest values of mean reflectivity standard deviation, linearity error, and normalized error and the highest values of duration.

$0.0 $0.5 $0.9 $0.95

CRSR SSR Dur StdDev LinErr NorErr Dur StdDev LinErr NorErr Dur StdDev LinErr NorErr Dur StdDev LinErr NorErr

6 48 2.90 8.77 21.88 0.05 3.64 8.22 26.80 20.03 3.67 8.20 27.67 20.01 3.53 8.20 27.23 0.01

6 96 3.08 8.65 23.83 0.06 3.89 8.11 28.46 20.04 4.05 8.08 30.62 20.02 4.08 8.12 30.08 20.04

6 192 3.19 8.60 25.58 0.08 3.95 8.05 30.14 20.01 3.96 7.99 29.30 20.05 3.89 8.04 29.43 20.02

12 48 2.89 8.83 21.94 0.07 3.73 8.26 27.60 20.02 3.89 8.23 28.74 20.02 3.71 8.23 28.48 0.01

12 96 3.02 8.73 23.53 0.07 3.93 8.10 29.04 20.04 4.17 8.06 30.91 20.04 4.09 8.10 31.12 20.01

12 192 3.10 8.68 24.81 0.09 3.95 7.99 29.97 20.03 3.97 7.95 29.94 20.04 3.88 8.02 29.76 20.01

24 48 2.99 8.88 22.18 0.06 3.95 8.25 28.26 20.05 4.05 8.23 29.45 20.04 3.91 8.24 29.29 20.01

24 96 3.10 8.79 23.46 0.06 4.19 8.03 30.36 20.06 4.36 8.00 31.66 20.07 4.25 8.06 31.10 20.05

24 192 3.15 8.76 24.63 0.08 4.15 7.91 31.11 20.05 4.08 7.91 30.41 20.05 3.93 8.00 29.17 20.04

48 48 3.19 8.84 25.45 0.10 4.20 8.21 32.38 0.02 4.22 8.22 33.48 0.04 3.94 8.22 31.51 0.05

48 96 3.30 8.76 26.18 0.09 4.49 8.00 32.73 20.06 4.46 8.01 32.68 20.06 4.19 8.05 31.62 20.02

48 192 3.33 8.73 27.02 0.11 4.37 7.89 32.85 20.05 4.18 7.94 32.04 20.02 3.91 8.02 30.49 0.00

Mean 3.10 8.75 24.21 0.08 4.04 8.09 29.98 20.03 4.09 8.07 30.57 20.03 3.94 8.11 29.94 20.01

Std dev 0.14 0.08 1.62 0.02 0.24 0.12 1.94 0.02 0.20 0.12 1.62 0.03 0.19 0.09 1.26 0.03
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several dozen kilometers between scans. For the case in

Fig. 1, the mid-life-cycle merging event, followed by an

end-of-life-cycle splitting event, produces a long-lasting,

northward-bulging, arc away from a best-fit line. This

results in a linear error of 87 km for the manually

generated southern MCS swath (label ii in Fig. 1). For

larger PMCS thresholds, the swath centroid will be more

chaotic, because there are many cases in which the

swath-centroid track will jump more than 15 min ahead

(e.g., Fig. 4b). The values produced by this study are

FIG. 6. Distribution of reanalyzed swath durations in hours for combinations of CRSR, SSR, and PMCS for (a) 2015 and (b) 2016. The

duration is calculated by finding the time-stamp difference between the last slice and first slice in a swath. The distribution medians and

means are denoted with black vertical lines and black dots, respectively. The gray dots are the mean duration values for swaths before the

reanalysis process. The box represents the interquartile range. The whiskers represent values between the 5th and 95th percentiles.

TABLE 6. As in Table 5, but for 2016.

$0.0 $0.5 $0.9 $0.95

CRSR SSR Dur StdDev LinErr NorErr Dur StdDev LinErr NorErr Dur StdDev LinErr NorErr Dur StdDev LinErr NorErr

6 48 2.84 8.87 21.62 0.09 3.77 8.33 27.49 20.01 3.99 8.27 30.03 0.00 3.89 8.28 29.60 0.01

6 96 3.04 8.74 23.87 0.09 3.98 8.19 28.79 20.04 4.16 8.14 31.21 20.01 4.15 8.18 30.92 20.02

6 192 3.17 8.67 24.88 0.08 4.04 8.09 28.79 20.06 4.07 8.06 30.08 20.04 4.13 8.10 30.36 20.04

12 48 2.92 8.93 22.21 0.09 3.88 8.34 28.81 20.01 4.08 8.30 29.97 20.01 3.99 8.32 30.15 0.01

12 96 3.06 8.80 23.25 0.08 4.10 8.17 28.42 20.06 4.34 8.11 31.41 20.05 4.32 8.14 31.31 20.05

12 192 3.14 8.75 24.17 0.08 4.13 8.07 28.93 20.07 4.11 8.04 29.32 20.07 4.03 8.08 28.75 20.06

24 48 3.04 8.97 22.28 0.07 4.05 8.35 29.27 20.03 4.34 8.32 31.62 20.02 4.27 8.31 31.28 20.02

24 96 3.14 8.85 23.27 0.06 4.29 8.12 28.96 20.09 4.47 8.09 31.10 20.09 4.39 8.15 31.26 20.06

24 192 3.17 8.80 24.08 0.08 4.26 8.01 29.62 20.07 4.19 8.02 29.87 20.07 4.05 8.08 28.93 20.06

48 48 3.23 8.91 25.15 0.11 4.25 8.34 33.53 0.05 4.35 8.35 34.72 0.07 4.15 8.32 32.63 0.05

48 96 3.33 8.81 25.96 0.10 4.44 8.08 32.42 20.05 4.28 8.12 33.23 0.01 4.14 8.17 31.92 0.01

48 192 3.36 8.77 26.70 0.10 4.42 7.97 33.28 20.03 4.02 8.07 30.28 20.02 3.87 8.11 29.35 20.01

Mean 3.12 8.82 23.95 0.09 4.13 8.17 29.86 20.04 4.20 8.16 31.07 20.03 4.11 8.19 30.54 20.02

Std dev 0.14 0.08 1.48 0.01 0.20 0.13 1.93 0.04 0.15 0.11 1.49 0.04 0.15 0.09 1.17 0.04
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much larger than those presented by Lakshmanan and

Smith (2010) and Houston et al. (2015). Although this

could be partly due to tracking deficiencies, one major

contributor to linearity error is the size of the storm

cluster (Fig. 8). Houston et al. (2015) state that one

of the goals for their tracking algorithm is to be sensi-

tive to detecting ‘‘reasonably small-scale storms,’’ and

Lakshmanan and Smith (2010) use a minimum storm

size of 20 km2. In comparison, MCS slices analyzed in

Part I typically range in size from 10 000 to 100 000 km2.

As was the case with mean duration, the distributions of

linearity error were significantly different between pre-

and postreanalysis swaths for many of the perturbations,

on the basis of results from a two-sample KS test.

Because all of the mean values of linearity increased,

this result suggests that the reanalysis step generally

introduces more linearity error. This could also be a

by-product of significantly longer tracks after reanalysis

(Houston et al. 2015).

Relative performance can be quantitatively measured

for each perturbation by combining duration, intensity

error, and linearity error into a single error metric. This

is performed by finding the sum of the negative nor-

malized duration, normalized intensity error, and nor-

malized linearity error. For this study, negative duration

is used because a longer track suggests better tracking

performance, whereas increases in intensity error and

linearity error suggest worse performance (Lakshmanan

and Smith 2010). To assess each perturbation’s per-

formance relative to the mean, the sum of errors is

subtracted from the mean sum of errors across all per-

turbations (Tables 5 and 6; Fig. 9). Swaths generated

using all qualifying slices (PMCS of 0.00) have the worst

collective performance of the four reported PMCS

thresholds. Swaths usingPMCS thresholds of 0.50 had the

best performance in 2015 and 2016, although values for

PMCS of 0.90 were similar for both years. For both years,

PMCS of 0.95 performed better than PMCS of 0.00. In

2015 and 2016, the best-performing perturbation used a

CRSR of 24 km, an SSR of 96 km, and a PMCS threshold

of 0.90, whereas the worst-performing perturbation

used a CRSR of 48 km, an SSR of 192 km, and a PMCS

threshold of 0.00. A major caveat of these results, in the

context of general-purpose storm tracking, is that they

are describing the relative performance of the 48 per-

turbations; that is, these results are only meaningful

when considering tracking MCSs.

5. 2015 and 2016 warm-season case studies

To demonstrate the utility of the method described in

this paper, we examine the spatiotemporal frequency of

FIG. 7. As in Fig. 6, but for the standard deviation of reflectivity values (for pixels greater than 0 dBZ).
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generated MCS swaths (Figs. 10 and 11). This analysis

also serves as a subjective validation of the method;

namely, the spatial patterns of MCS activity are com-

pared with applicable studies and climatological expec-

tations. The data in Figs. 10 and 11 are generated by

selecting only those events that lasted for 3 h or more

(MCS swaths) from each of the 48 reanalyzed track

perturbations for 2015 and 2016. In general, the area

covered by MCS swaths increases as CRSR and SSR

increase. This is not surprising, because larger values of

CRSR allow for more nearby cells to be combined into

one larger MCS core, which, in turn, permits more area

to be searched for affiliated stratiform regions. As was

illustrated in Part I, MCS swaths generated using a PMCS

value of 0.95 result in the retraction of relatively high

MCS swath frequency to the east-central Great Plains.

In contrast, MCS swaths using a PMCS value of 0.00 ex-

tend the same 40-h isopleth to most of the Gulf and

Atlantic Coasts for some perturbations. For all of the

perturbations, the maximum MCS swath occurrence

lines up well with comparable climatologies (Rodgers

et al. 1985; Augustine andHoward 1988, 1991; Anderson

and Arritt 1998, 2001; Ashley et al. 2003). These studies

found that mesoscale convective complexes and other

MCS subtypes occurred most often in the central and

eastern plains during the warm season. On the other

hand, studies such as those by Geerts (1998) and Pinto

et al. (2015) have included ‘‘less organized convective

areas’’ in the southeastern United States in their MCS

analyses, resulting in a frequency maximum along the

Gulf Coast. The use of a 50-dBZ threshold to generate

MCS cores could exclude many of these events from the

dataset generated by this study.

Next, a subjective comparison between MCS swath oc-

currence generated by this study and an external source is

performed. To be specific, the results of this study are

compared with those presented by Geerts et al. (2017).

That study objectively required an MCS to have the fol-

lowing properties: 1) the maximum precipitation intensity

is greater than or equal to 35dBZ, 2) the horizontal extent

of intensity of at least 35dBZ is greater than or equal to

100 km, and 3) the precipitation cluster lasts at least 1 h.

For their purposes, they only examined precipitation clus-

ters that occurred between 0200 and 1100 UTC (i.e.,

‘‘nocturnal’’) from 1 June to 15 July 2015. They found that

the greatest nocturnal MCS activity occurred in southern

Iowa, southeastern Nebraska, northeastern Kansas, north-

ernMissouri, and southern Illinois (see Fig. 1 inGeerts et al.

2017). To generate comparable frequency maps for the

current study (Fig. 12), reanalyzed MCS swaths (CRSR 5
24 km and SSR 5 96 km) are selected for the same dates

and times and the following PMCS thresholds are used: 0.00

FIG. 8. As in Fig. 6, but for linearity error (km).
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(Fig. 12a), 0.50 (Fig. 12b), 0.90 (Fig. 12c), and 0.95 (Fig. 12d).

The resulting frequency maps agree reasonably with the

map presented byGeerts et al. (2017). The following spatial

features exist in both datasets: 1) the placement and shape

of the relative MCS activity maximum extending from

western Nebraska southeastward to central Tennessee, 2)

the placement of the overall maximum in southeastern

Nebraska andnorthwesternMissouri (particularly for swaths

forPMCS of 0.90 and 0.95), 3) the location of regionalMCS

activityminima in southernWisconsin, northernArkansas,

and southwestern Kansas, and 4) the location of a regional

MCS activity maximum in northern Texas. Although the

MCS qualification criteria vary between the two studies,

similarities in the spatial structure of MCS activity for this

period are encouraging.

Last, we demonstrate the use of the dataset to gen-

erate time series analyses of the spatial coverage of

convective pixels associated with MCS swaths over the

CONUS for June of 2015 (Fig. 13). The darkened areas

in Fig. 13 represent nocturnal hours (Geerts et al. 2017)

to illustrate the diurnal cycle of MCS activity. For

comparative purposes, the spatial coverage of all con-

vective pixels in each image is calculated, as well as a

differentiation in the area covered by swaths for PMCS

thresholds of 0.00 and 0.95. This map effectively shows

that in many cases the timing of the maximum diurnal

convective coverage over the CONUS does not match

up with the maximum in the areal coverage of convec-

tion within MCS swaths. This result is expected, because

MCSs are largely a late-evening and overnight phe-

nomenon for many parts of the CONUS (Carbone et al.

2002), whereas smaller-scale DMC frequency is largely

controlled by the diurnal cycle of instability (Carbone

and Tuttle 2008; Haberlie et al. 2015). Further, using a

PMCS threshold of 0.95 instead of 0.00 appears to

strengthen this diurnal disparity. One example occurred

on 11 June 2015; in this example, the spatial coverage of

convection associated with PMCS-0.00 swaths is strongly

tied to the overall convective coverage and peaks in the

late afternoon. In contrast, convective coverage associ-

ated with PMCS-0.95 swaths peaks overnight.

6. Discussion and conclusions

This paper is the second of two related papers that

describe, verify, and utilize an MCS segmentation,

FIG. 9. Total normalized error for combinations of CRSR, SSR, and PMCS, denoted by black dots, for (a) 2015 and (b) 2016. The sum of

normalized linearity error and intensity error is subtracted from the normalized duration value. The difference between the sum for each

perturbation and the average sum for all perturbations is the reported normalized error metric. A negative normalized error suggests

better-than-average performance.
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FIG. 10. Spatial occurrence (h; shaded) ofMCS swaths (minimumof 3 h) with aPMCS of 0.5 or higher in 2015 duringMay–September for

varying CRSR and SSR. The solid line denotes the 40-h isopleth for slices with a PMCS of 0.95 or higher, and the dotted line denotes the

40-h isopleth for all qualifying slices. The CRSR values are (a)–(c) 6, (d)–(f) 12, (g)–(i) 24, and (j)–(l) 48 km. The SSR values are (left)

48, (center) 96, and (right) 192 km.
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FIG. 11. As in Fig. 10, but for 2016.
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classification, and tracking framework introduced in

Part I. This second paper specifically focuses on the

tracking portion of this framework. The specific goal of

this work is to use the MCS slices generated in Part I to

produce MCS swaths. MCS slices are associated with a

number of attributes and are assigned a probabilistic

classification value PMCS, for which a value of 1 suggests

that the slice is very likely to be anMCS slice and a value

of 0 suggests that the slice is not likely to be an MCS

slice. Using four probability thresholds (0.00, 0.50, 0.90,

and 0.95), four CRSR values (6, 12, 24, and 48 km), and

three SSR values (48, 96, and 192 km), a total of 48

perturbations are used to generate MCS swaths for

the purposes of testing the sensitivity of the tracking

procedure to these values (see Part I for more in-

formation on these values).

MCS swaths are generated through a two-step pro-

cedure. First, slices are matched using the spatiotem-

poral overlap technique. If more than one match was

found, the Hungarian method (Munkres 1957; Dixon

and Wiener 1993) is used to associate the most similar

slices. Second, swaths that last at least 0.5 h are rean-

alyzed for the purposes of connecting multiple swaths

together that are separated by brief (1 h or less)

discontinuities. Subjective and objective assessments

of tracking performance for each of the 48 perturbations

are carried out to determine the optimal combina-

tion of the available parameter values. Performance is

FIG. 12. Spatial occurrence (h) of nocturnal (0200–1100 UTC; Geerts et al. 2017) MCS swaths (minimum of 3 h)

with a PMCS of (a) 0.00, (b) 0.50, (c) 0.90, or (d) 0.95, occurring between 1 Jun and 15 Jul 2015 (CRSR is 24 km and

SSR is 96 km).

JULY 2018 HABERL I E AND ASHLEY 1617



determined on the basis of three metrics: 1) mean

swath duration, 2) mean standard deviation of

reflectivity per swath (intensity error), and 3) root-

mean-square error between centroid positions and a

linear regression fit to all centroid positions in the

swath (linearity error). The swaths are then used to

generate a climatology for the 2015 and 2016 warm

season. These results are then compared with external

MCS frequency data to assess the level of agreement

with existing research.

Subjective MCS swath accuracy varied among pertur-

bations for the three cases examined. Overall, there was

agreement between manual tracks and automatically

generated tracks. One issue illustrated by the subjective

assessment was that swaths generated using larger PMCS

values (i.e., 0.90 and 0.95) are sometimes incorrectly

truncated (Figs. 3d and 4b). This is caused by the stricter

thresholds removing all slices from spatiotemporal overlap

consideration for a couple of radar images. When the

slices regain the higher PMCS values, the previous swath is

FIG. 13. The areal coverage of all convective pixels (dashed gray line), convective pixels within PMCS-0.00 swaths (solid gray line), and

convective pixels within PMCS-0.95 swaths (solid black line) during June 2015. The darkened areas are times from 0200 to 1200 UTC

(nocturnal; Geerts et al. 2017). Convective pixels are defined as pixels with intensities of $40 dBZ.
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already terminated, and therefore a new track is created.

To address this issue, swaths lasting at least 0.5 h are re-

analyzed to connect swaths together, as long as no more

than 60 min have elapsed since swath termination. This

step resulted in statistically significantly longer tracks (p,
0.001), which is considered to be a positive outcome in the

context of storm-tracking performance (Lakshmanan and

Smith 2010).

The objective assessment of tracking performance

was completed by computing three key metrics outlined

as important in previous work (Lakshmanan and Smith

2010): 1) mean swath duration (Fig. 6), 2) intensity error

(Fig. 7), and 3) linearity error (Fig. 8). These values are

calculated using reanalyzed swaths for all 48 perturba-

tions. Mean swath durations for all tracks lasting at least

0.5 h are increased by using a PMCS of 0.50 as compared

with a PMCS of 0.00. The reanalyzed swaths increased

linearity error, which is likely due to abrupt changes in

centroid location caused by associating slices that have

been moving away from the location of terminated

swaths for up to 60 min. Overall, the best-performing

perturbation used a CRSR of 24 km and an SSR of

96 km (Tables 5 and 6; Fig. 9). As a group, the swaths for

PMCS of 0.50 and 0.90 had better performance metrics

than the PMCS-0.95 and PMCS-0.00 swaths.

In general, the spatial frequency of MCSs that is

presented in Figs. 10 and 11 agreed with previous work

(e.g., Ashley et al. 2003; Anderson and Arritt 2001).

Using a PMCS threshold of 0.95 to generate swaths limits

the area of relatively high MCS activity to the central

and eastern Great Plains. Output from a 6-week

period that overlapped with a field campaign described

in Geerts et al. (2017) matched up well with their au-

tomated MCS frequency map (Fig. 12). The spatial

structure of occurrence, as well as regional maxima and

minima in MCS occurrence, is similar in the two data-

sets. These results are encouraging and suggest that the

segmentation, classification, and tracking framework

would be able to generate an accurate long-term, auto-

mated, climatology of CONUS MCSs.

Within the MCS literature, it is clear that, once con-

vective clusters meet the objective PJ00 criteria, the

subjective inclusion or exclusion of events is largely an

ad hoc endeavor. The results presented by this study are

based on the subjective assessment of convective clus-

ters performed by the authors. To be specific, we do not

claim that MCS swaths generated using higher PMCS

thresholds aremore ‘‘MCS like’’ than other events—this

designation only suggests that these events adhere more

strongly to our mental schema of what constitutes an

MCS. The ultimate goal of this work is not to provide a

definitive definition of an MCS but rather to propose a

framework for exploring an acceptable balance between

probability of detection and probability of false de-

tection for the particular task in which the data are being

used. Future work should focus on improving the ability

of computers to translate subjective expert classifica-

tions into accurate and reliable predictions on pre-

viously unseen data. Future gains in accuracy will likely

require new image-classification techniques, such as

convolutional neural networks (LeCun and Bengio

1995; Krizhevsky et al. 2012; Dieleman et al. 2015), that

retain the spatial relationships of varied intensity within

MCS slices. For this study, those relationships are

largely lost when theMCS slice is reduced to 14 features

(see Table 3 in Part I). Further, more-exotic tracking

methods should be explored to improve tracking per-

formance. For example, multiple hypothesis testing

would be useful for determining the best spatiotemporal

association to perform during merging or splitting

events (Lakshmanan et al. 2013).
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