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ABSTRACT

This research evaluates the ability of image-processing and select machine-learning algorithms to identify

midlatitude mesoscale convective systems (MCSs) in radar-reflectivity images for the conterminous United States.

The process used in this study is composed of two parts: segmentation and classification. Segmentation is performed

by identifying contiguous or semicontiguous regions of deep, moist convection that are organized on a horizontal

scale of at least 100 km. The second part, classification, is performed by first compiling a database of thousands of

precipitation clusters and then subjectively assigning each sample one of the following labels: 1) midlatitudeMCS,

2) unorganized convective cluster, 3) tropical system, 4) synoptic system, or 5) ground clutter and/or noise. The

attributes of each sample, along with their assigned label, are used to train three machine-learning algorithms:

random forest, gradient boosting, and ‘‘XGBoost.’’ Results using a testing dataset suggest that the algorithms can

distinguish between MCS and non-MCS samples with a high probability of detection and low probability of false

detection. Further, the trained algorithm predictions are well calibrated, allowing reliable probabilistic classifica-

tion. The utility of this two-step procedure is illustrated by generating spatial frequency maps of automatically

identified precipitation clusters that are stratified by using various reflectivity and probabilistic prediction thresh-

olds. These results suggest that machine learning can add value by limiting the amount of false-positive (non-MCS)

samples that are not removed by segmentation alone.

1. Introduction

Midlatitude mesoscale convective systems (MCSs)—an

aggregation of deep, moist convection (DMC) organized

on a scale larger than individual updrafts—are a funda-

mental component of the conterminous United States

(CONUS) hydroclimate (Zipser 1982; Ashley et al. 2003;

Houze 2004). In addition, MCSs can produce (or contrib-

ute to) atmospheric and hydrological hazards, such as

damagingwinds, tornadoes, and flash flooding (Fritsch and

Forbes 2001; Ashley and Ashley 2008). Because of the

influence of these events on many aspects of society and

the increasing availability and temporal length of remotely

sensed datasets,MCSs have been the focus of intense study

over the last half-century (Houze 2004).

An important aspect of many of these studies is the

ability to detect MCSs in remotely sensed imagery.

MCSs are identified by noting cloud or precipitation

clusters that meet certain size, intensity, and duration

thresholds (Houze 2004; Table 1). For example, a widely

used, dynamically motivated, definition proposed by

Parker and Johnson (2000, hereinafter PJ00) describes

MCSs as long-lasting ($3 h) precipitation clusters that

contain a contiguous or semicontiguous region of DMC

with a major axis length that is greater than or equal to

100 km (herein the objective definition of an MCS). In

addition, linear MCSs—and, in a similar way, nonlinear

MCSs (Lombardo and Colle 2010)—must also show

evidence of organization that matches the current un-

derstanding of the internal dynamics of these systems

(PJ00; Houze 2004; herein the subjective definition of an

MCS). Identification of radar-derived organizational

patterns that are commonly affiliated with MCSs has

largely been accomplished through subjective analysis

(Gallus et al. 2008; Mulder and Schultz 2015; Corfidi

et al. 2016; Miller and Mote 2017). This approach limits

the amount of data that can be processed in a feasible

amount of time (Lakshmanan and Smith 2009) and

depends on pattern recognition that is ‘‘open to [the]

judgement’’ of those performing the manual analysis

on a case-by-case basis (Corfidi et al. 2016). As an
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alternative, image segmentation and storm tracking

(Lakshmanan and Smith 2010) can be used to identify

spatially contiguous regions of specific ranges of instanta-

neous precipitation rates (herein regions of precipitation)

that meet the objective definition of an MCS. This ap-

proach alone does not test for the subjective definition of

an MCS, however. To test whether events that meet

the objective definition of an MCS also meet the sub-

jective definition of an MCS in an automated way, one

can use supervised machine learning (Theodoridis and

Koutroumbas 2003). Supervised machine learning has

been utilized to classify convective organization auto-

matically at a reasonably high accuracy using features

derived from hundreds of manually labeled examples

(Baldwin et al. 2005; Gagne et al. 2009). This approach

results in more predictable and repeatable classification

decisions while also significantly reducing analysis time.

The ultimate goal of any supervised machine-learning

algorithm used to identify MCS events is to accurately

discriminate between MCS events that meet the objec-

tive and subjective definition of an MCS and those

events that only meet the objective definition of anMCS

(herein non-MCSs).

This paper describes part of a framework that is used

to identify MCSs—specifically those that occur in the

midlatitudes—in sequences of mosaicked composite radar-

reflectivity images. The framework includes three major

parts: segmentation, classification, and tracking. This

paper will focus on the segmentation and classification

aspects of the framework, and a second, affiliated, paper

(Haberlie and Ashley 2018, hereinafter Part II) will dis-

cuss tracking as well as give examples of applying the

method with observational data. The main contributions

of this paper include 1) evaluation of a machine-learning

procedure for discriminating between MCSs and non-

MCSs, 2) illustration of the sensitivity of spatial event oc-

currence to image-segmentation parameters, in particular

when identifying MCSs, and 3) spatiostatistical description

of a novel, manually labeled, dataset of radar-derived

features from regions of precipitation determined to be an

MCS or a non-MCS. Training and testing of select machine-

learningalgorithms is performedona sampleof thousandsof

hand-labeled precipitation clusters. This approach and the

affiliated results are discussed in section 5. The segmentation

and classificationprocedures are applied to radar images that

represent cases from twowarm seasons (May–September of

2015 and 2016) to performa subjective validation (section 6).

The process detailed herein is scalable and can be used to

process multiple decades of reflectivity mosaics in a reason-

able amount of time on a desktop computer. New data and

machine-learning techniques can also be incorporated into

this framework as they become available. All segmentation

and classification procedures are completed using open-

source packages written in the Python programming

language, including SciPy (van derWalt et al. 2011), scikit-

learn (Pedregosa et al. 2011), scikit-image (van der Walt

et al. 2014), and XGBoost (Chen and Guestrin 2016). The

data and Python code used for this paper are available

online (https://github.com/ahaberlie/MCS/).

2. Background

a. Mesoscale convective systems

MCSs are organized assemblages of thunderstorms

that produce distinct circulations and features at a larger

scale than any individual, constituent convective cell

(Zipser 1982). These systems are proficient rain pro-

ducers and important drivers of energy redistribution in

the atmosphere (Fritsch and Forbes 2001), producing

an assortment of atmospheric hazards, including torna-

does (Trapp et al. 2005), damaging nontornadic winds

(Ashley and Mote 2005), and flash floods (Doswell et al.

1996). In addition, MCSs are an important aspect of the

central and eastern CONUS hydroclimate, producing a

large proportion of warm-season precipitation for many

areas in this region (Ashley et al. 2003; Houze 2004;

Feng et al. 2016). Because of their multifaceted nature

TABLE 1. Selection of MCS definitions on the basis of spatiotemporal radar-reflectivity attributes.

Reference Radar data type

Reflectivity

threshold (dBZ) Min length (km) Min duration (h)

Hilgendorf and Johnson (1998) Level-II mosaic 30 100 —

Geerts (1998) Composite 20 100 4

Parker and Johnson (2000) Composite 40 100 3

Schumacher and Johnson (2005) Composite 40 100 3

Cohen et al. (2007) Composite — 100 5

Gallus et al. (2008) Composite 30 75 2

Hane et al. (2008) Level-II mosaic 20 100 3

Hocker and Basara (2008) Level-II mosaic 40 50 0.5

Coniglio et al. (2010) Composite 35 100 5

Lombardo and Colle (2010) Composite 35 50 0.5
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and meteorological and climatological importance, these

events have been (and continue to be) motivating factors

for several CONUS-based field projects over recent de-

cades [e.g., PRE-STORM (Cunning 1986), IHOP_2002

(Weckwerth et al. 2004), BAMEX (Davis et al. 2004), the

Mesoscale Predictability Experiment (MPEX; Weisman

et al. 2015), and the Plains Elevated Convection at Night

field project (PECAN; Geerts et al. 2017)].

b. Detecting mesoscale convective systems

MCSs are typically observed, identified, and tracked

using radar or satellite imagery (Fritsch and Forbes

2001; Houze 2004). Two kinds of data are generated

during anMCS tracking process (e.g., Fiolleau and Roca

2013): 1) ‘‘slices’’ from single radar or satellite images

and 2) ‘‘swaths’’ that connect slices through sequences of

images (Fig. 1). This paper focuses on the detection of

slices in composite reflectivity images, whereas Part II

will focus on the generation of swaths. Slices (an ex-

ample is given by label i in Fig. 1), in the context of this

study, are radar-derived objects that represent a con-

tiguous region of instantaneous precipitation. For a slice

to be considered a ‘‘candidate MCS slice,’’ it must con-

tain an ‘‘MCS core’’ (an example is given by label ii in

Fig. 1) that meets intensity and size requirements (e.g.,

PJ00 criteria). An MCS core is a contiguous or nearly

contiguous line or area of convection ($40dBZ) that

may or may not be surrounded by affiliated stratiform

($20dBZ) precipitation. The existence of an MCS core

is an important way to distinguish candidate MCS slices

from other radar-derived objects [e.g., mesoscale pre-

cipitation features (Rickenbach et al. 2015) or banded-

precipitation features (Fairman et al. 2016, 2017)], and

these features are noted ubiquitously in schematic and

radar-derived examples ofMCS slices (e.g., PJ00; Gallus

et al. 2008; Lombardo and Colle 2010). Slices that con-

tain qualifying MCS cores can then be organized into

swaths (label iii in Fig. 1). A candidate MCS slice is

considered to be an MCS slice when it is associated

with a swath that persists for a certain amount of time

(i.e., an MCS swath).

The main goal of segmentation—the process of ex-

tracting candidate MCS slices from radar-reflectivity

images—is to identify slices that are likely associated

with an MCS. Although a single radar snapshot cannot

determine whether a slice is a part of an MCS (PJ00),

many studies have noted common sizes, intensities, and

patterns of intensity that are indicative of internal me-

soscale circulations associated with these events. PJ00

provides a radar-based, dynamically motivated, objec-

tive definition of MCSs—namely, that these systems

contain contiguous or semicontiguous regions of con-

vective precipitation at least 100 km in length and lasting

for 3 h. These temporal (t5LU21) and length (L5Ut)

FIG. 1. Demonstration of the data generated during the segmentation and tracking process using the life cycle of a June 2012 derecho

(Halverson 2014) as an example. Radar data are valid from 1500 UTC 29 Jun to 1000 UTC 30 Jun 2012. MCS slices (label i points to the

middle example) are plotted every 4 h (1500, 1900, 2300, 0300, and 0700 UTC) for visualization purposes. MCS slices are made of MCS

cores (e.g., the area inside the dotted black line indicated by label ii) and affiliated stratiform precipitation. MCS slices are then associated

over time to generate an MCS swath (the area inside the solid black line indicated by label iii). The shading (from light to dark gray)

corresponds to the following reflectivity intensities, respectively: stratiform ($20 dBZ), convective ($40 dBZ), and intense ($50 dBZ).
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scales are based on 1) a Rossby number Ro that is in-

dicative of a balance between inertial and Coriolis ac-

celerations (Ro ’ 1), 2) the characteristic midlatitude

Coriolis force f (f5 1024 s21), and 3) the representative

translational velocityU ofMCSs and their affiliated cold

pools (U 5 10m s21). This definition forms the basis of

our radar-based MCS identification process.

The segmentation approach (thresholds, algorithms,

etc.) can have a substantial impact on the results of a

study and is generally related to the phenomenon of

interest (Lakshmanan and Smith 2009). In the case of

candidate MCS slice identification, segmentation errors

can result in 1) too many candidate MCS slices, 2)

missed candidate MCS slices, or 3) incorrect merging of

multiple candidate MCS slices. To illustrate the first

case, consider anMCS slice from 0400 UTC 2May 1997,

extending from northwestern Missouri to western

Oklahoma (see Fig. 7c of PJ00). Although the most in-

tense portion of the MCS slice (with reflectivity values

greater than 50dBZ) is in northwestern Oklahoma, two

distinct areas of convective precipitation with major

axes greater than 100 km exist to the north and east in

northeastern Kansas. On the basis of the objective PJ00

criteria, this single MCS slice would be broken up into

three MCS slices (Fig. 2a). A second example of a po-

tential segmentation issue can be illustrated using an

MCS slice from 1100 UTC on 7 May 1997 (see Fig. 6c of

PJ00). Although the broken group of convective cells

formed a line with a length that is greater than 100 km,

the individual convective cells are separated by regions

of reflectivity of less than 40dBZ. Thus, even using a

stratiform threshold to combine qualifying convective

areas would fail when just using a 40-dBZ threshold,

despite this event being a legitimateMCS slice (Fig. 2b).

Further, using a stratiform shield to combine qualifying

regions of convection can sometimes result in the

merging of multiple unique candidate MCS slices. For

example, when viewing theMCS slice depicted in Fig. 2b

from a regional perspective (Fig. 3), it is evident that it is

within a larger region of precipitation of at least strati-

form intensity extending from South Dakota south and

eastward into Nebraska and Iowa (Fig. 3). Although

there are at least two unique MCS cores (Fig. 3b) and

affiliated stratiform regions (Fig. 3c), using a stratiform

FIG. 2. Two examples [(a) 0400UTC2May and (b) 1100UTC7May 1997] from the literature (Figs. 7c and 6c, respectively, of PJ00) that

demonstrate the results of detecting regions of connected pixels with lengths of greater than 100 km when using a convection ($40 dBZ)

threshold (dashed boxes). The dashed lines denote the bounding box of contiguous regions that have amajor axis length of at least 100 km.
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threshold to aggregate qualifying areas of convection

would result in one large candidate MCS slice. These

issues motivated the development of a more sophisti-

cated segmentation approach that will be discussed in

section 4.

c. Classification of convective clusters using
supervised machine learning

The process of developing knowledge through obser-

vations and then applying it to new, unseen data is called

pattern recognition (Theodoridis and Koutroumbas 2003).

Although humans excel at pattern recognition, large da-

tasets canmake laboriousmanual classification impractical

(Theodoridis and Koutroumbas 2003). Two approaches

can be used to automate this task: 1) expert systems and

2) supervised machine learning. Expert systems use

domain knowledge to define criteria for classification

decisions. An example of an expert system would be an

algorithm that labels precipitation clusters using specific

size and intensity thresholds (e.g., the objective defini-

tion of an MCS). Alternatively, supervised machine

learning can generate a generalized model of classification

decisions on the basis of the statistical properties of

sample data. Rather than a set of rules, an expert pro-

vides training data with categorical labels (e.g., the

subjective definition of an MCS), and a machine-learning

algorithm develops a way to determine how to sort those

data most accurately into categories (e.g., Baldwin et al.

2005; Gagne et al. 2009; McGovern et al. 2017). After this

training is complete, a well-performing model would be

able to ingest previously unseen data and assign correct

labels at rates comparable to, or, possibly better than,

those of humans.

Supervised machine learning is used for this study to

address the issue of mislabeling non-MCS regions of

precipitation as candidate MCS slices (i.e., false posi-

tives) when only using the objective definition of an

MCS. We have identified three common false-positive

classes: unorganized clusters or lines of convective cells

(UCC), tropical systems (‘‘tropical’’), and synoptic

precipitation systems (‘‘synoptic’’). In addition, ‘‘ground

clutter’’ (‘‘clutter’’) is included as a class because of its

ubiquity in the dataset and will herein be considered as a

non-MCS class. Ground clutter is a phenomenon that is

not typically associated with precipitation but some-

times appears as a ring of stratiform-intensity pixels with

FIG. 3. Demonstration of segmentation steps for candidate MCS slices using reflectivity valid at 1100 UTC 7 May 1997 (cf. Fig. 6c in PJ00):

(a) Convective ($40 dBZ) cells with regions of intense convection ($50 dBZ) and areas greater than 40 km2 are extracted (black outlined

regions). (b) These cells are then connected if they arewithin a specified radius (12 km; black-outlined regions). If a connected region has amajor

axis length of at least 100 km, they are considered to be candidate MCS cores. (c) Stratiform ($20 dBZ) pixels within a specified radius (96 km)

are then associated with their respective cores, and the resulting candidate MCS slices are delineated by the black-outlined areas.
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embedded convective-intensity pixels (Fig. 4a). Pre-

cipitating examples of false positives include broken,

unorganized, clusters or lines of convective cells [Fig. 4b;

see also Fig. 2 of Gallus et al. (2008) and Fig. 2f of

Lombardo and Colle (2010)], tropical systems [Fig. 4c;

see also Fig. 2 of Matyas (2009)], and synoptic regions of

precipitation (Fig. 4d). For true positives (i.e., valid

MCS slices), studies like PJ00 and Lombardo and Colle

(2010) provide several illustrations and descriptions of

various kinds of MCS slice morphologies (parallel,

leading, trailing, no stratiform, areal, etc.). Our goal is

not to propose a specific radar-based definition for each

of these classes but rather to determine whether the

identified events exhibit spatiostatistical attributes that

are meteorologically and climatologically reasonable

(see section 6).

Although the various false-positive and true-positive

examples are visually discernable, manually generating a

set of rules to separate the two groups would be difficult

(e.g., Fig. 6 of Gagne et al. 2009; McGovern et al. 2017).

Supervised machine learning has been used successfully to

automate similar problems (McGovern et al. 2017). For

FIG. 4. Examples of non-MCS pixel regions that could qualify as MCSs per PJ00. These include (a) ground clutter near Dallas, Texas,

at 2230 UTC 14 Jul 2000, (b) UCCs over western Iowa at 2305 UTC 10 Jun 2005, (c) Hurricane Charley over central Florida at 2350

UTC 13 Aug 2004, and (d) a region of synoptic-scale rainfall over central New York at 1915 UTC 27 Jul 2004. The horizontal line in each

image represents 100 km. Intensity is denoted as in Fig. 1.
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example, Gagne et al. (2009) used several machine-

learning algorithms to differentiate among six types of

convective precipitation regions. Their approach was to

perform hand classification on a set of ;900 images by

using a graphical interface that presented various storm

attributes (reflectivity, size, shape, etc.). Their manual

classification decisions were based on knowledge of con-

vective cluster hierarchies, such as those presented in PJ00

and Gallus et al. (2008). Once the storms were identified,

feature extraction was performed to calculate various at-

tributes of the hand-labeled storms (see Table 1 of Gagne

et al. 2009). These attributes were then used to train

machine-learning algorithms. The best-performing algo-

rithm was the one known as random forest (RF; Breiman

2001), followed closely by various bagging and boosting

approaches (see Fig. 8 of Gagne et al. 2009). These algo-

rithms are still popular in many fields (e.g., ‘‘XGBoost’’;

Chen and Guestrin 2016), including the atmospheric sci-

ences (Gagne et al. 2014, 2017; Ahijevych et al. 2016;

McGovern et al. 2017). The RF algorithm is an ensemble

of fully grown decision trees generated using random split

features (Breiman 2001). Alternatively, gradient boosting

(GB) is an ensemble of shallow decision trees that are it-

eratively generated to address deficiencies in previously

generated decision-tree predictions (Gagne et al. 2017). In

addition, this study uses the XGBoost algorithm (Chen

and Guestrin 2016). XGBoost is an extension of GB that

uses additional methods that reduce model overfitting.

These algorithms can rival the performance of more

complex algorithms (e.g., deepneural networks;Krizhevsky

et al. 2012) in machine-learning competitions (Chen and

Guestrin 2016), with less time spent on tuning model

hyperparameters. Gagne et al. (2017, their section 2.4)

provide a detailed summary of these algorithms and

their application in the atmospheric sciences. This study

will focus on the application of RF,GB, andXGBoost to

address the false-positive problem, and the approach is

described in detail in section 5.

3. Data

a. Radar data

Virtually continuous archiving of remotely sensed

precipitation patterns has been ongoing within the

CONUS for over 20 years. The associated data archive, a

stated goal of the Next Generation Weather Radar pro-

gram (NEXRAD;Crum et al. 1993), has been increasingly

leveraged for climatological studies (Matyas 2010). Re-

flectivity data (a proxy for instantaneous precipitation in-

tensity) from this archive have greater spatial coverage and

temporal resolution than do rain gauge observations

(Brooks and Stensrud 2000) and have been used in many

studies to identify the occurrence of atmospheric phe-

nomena. These data are useful for this study because

MCSs are generally identified by visual patterns in radar-

reflectivity data (see section 2).

National Operational Weather Radar (NOWrad), gener-

ated and quality controlled by Weather Services Interna-

tional (now TheWeather Company), will be utilized for the

purposes of developing and validating the MCS-tracking

procedure. NOWrad is a national composite reflectivity ra-

dar mosaic product that has a horizontal resolution of ap-

proximately 2km (see Fabry et al. 2017). For the purposes

of this study, distance and area calculations are simplified

by defining a pixel length as 2 km and a pixel area as

4 km2. NOWrad grid (1837 by 3661 pixels) values are

calculated by gathering reflectivity data approximately

every 5min from CONUS NEXRAD stations. Because

the product is generated from NEXRAD data, most of

the caveats associated with composite reflectivity data

apply (Smith et al. 1996), with some exceptions. Range-

dependent biases are addressed by considering com-

posite data fromall radarswithin 230kmwhen setting pixel

values (Parker and Knievel 2005). Anomalous propaga-

tion and false echoes are removed through an automated

quality-control procedure (Carbone et al. 2002). These

techniques are effective in producing spatially contiguous

composite reflectivity fields at both 5- and 15-min intervals,

especially in areas with sufficient radar overlap (i.e., much

of the central and eastern CONUS), and these data have

been used in many climatological studies (e.g., Parker and

Knievel 2005; Parker and Ahijevych 2007; Carbone and

Tuttle 2008; Tuttle and Carbone 2011; Ashley et al. 2012;

Haberlie et al. 2015, 2016; Fabry et al. 2017).

b. Study area and study period

Qualifying slices forMay–September in 2015 and 2016

are extracted from composite reflectivity images to as-

sess subjectively the performance of the segmentation

and classification procedure. These periods experienced

above-average precipitation in the Midwest and Great

Plains (McEnery et al. 2005), suggesting that MCS activity

was also above average (Houze 2004). Further, the 2015

warm season coincides with the PECAN field project

(Geerts et al. 2017), allowing the opportunity for addi-

tional verification against an external dataset of events that

were identified by researchers with MCS expertise. The

machine-learning model was trained and tested with over

3600 labeled objects that were manually extracted from an

11-yr period of NOWrad images (2003–13).

4. Segmentation

Slices are identified in radar-reflectivity images by

searching for groups of connected pixels that meet size
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and intensity criteria. Three ranges of reflectivity

threshold values are used to perform this task, with ad

hoc labels of stratiform, convection/convective, and in-

tense (e.g., Fig. 4 in PJ00; Table 2). Further, the term

‘‘convective region’’ is used in this study to refer to an

area of pixels that meet or exceed the convective re-

flectivity threshold, with one or more of those pixels

meeting or exceeding the intense threshold. Aminimum

areal constraint is placed on convective regions to re-

duce the effects of nonmeteorological radar echoes (i.e.,

‘‘noise’’; Lack and Fox 2012; Lakshmanan et al. 2013)

and corresponds to the minimum size of a Byers–

Braham cell (Byers and Braham 1948; Miller and

Mote 2017). To be considered a candidate MCS slice for

this study, the major axis length of the convective region

must exceed a certain value (Table 2). If these re-

quirements are met, stratiform precipitation within a

specified radius (Table 2) is combined with the qualifying

convective region to create a candidate MCS slice object.

In the case of broken lines and unconnected cells within a

specified distance of one another (e.g., Baldwin et al. 2005;

Pinto et al. 2015; Chang et al. 2016; Table 2), temporary

connections are made to perform size and intensity quali-

fication checks, and, if necessary, stratiform associations.

The decision to connect nearby convective regions, even if

there is no convective precipitation ‘‘bridge,’’ is based on

various examples and conceptual discussions ofMCSs that

have been provided in the literature [e.g., Figs. 5 and 6 in

PJ00 and the discussion inDoswell (2001, p. 8)]. In specific

terms, it is thought that DMC updrafts (Byers–Braham

cells) should belong to the same MCS if they are close

enough to interact. The segmentation process ultimately

results in a varying number of unique pixel groups that

meet the aforementioned segmentation criteria for each

radar image. This definition will encompass the variety

of MCS subclassifications found in the literature (e.g.,

Bluestein and Jain 1985; Parker and Johnson 2000;

Lombardo and Colle 2010).

Candidate MCS slices for each NOWrad image are

extracted by identifying qualifying convective regions

and then associating them with nearby stratiform re-

gions (Fig. 3). First, a binary mask representing the pixel

coordinates of the initial convective regions is generated

by identifying unique groups of contiguous pixels that

contain at least a specified number of convective pixels

and contain one or more intense pixels (Fig. 3a). To

connect convective regions within a specified distance of

one another, a binary closing is applied to the resulting

binary mask to form temporary agglomerations of these

regions. In contrast to a binary dilation, which in-

discriminately extends the binary mask in all directions, a

binary closing forms bridges between nearby regions

without modifying the size of isolated regions (Fig. 3b).

The former approach would result in a larger number of

small convective regions that meet the size requirement,

since their major axis length would be artificially inflated.

Next, all stratiform pixels within a specified distance of

pixels associated with a qualifying convective region (e.g.,

label ii in Fig. 1) are identified to generate a second binary

mask (Fig. 3c). Last, the corresponding intensity in-

formation for each unique group of contiguous pixels in

this mask is extracted to generate an MCS slice candidate

(e.g., Fig. 1i).

5. Classification

a. Overview

Classification decisions are determined by training

selected classifiers using features from thousands of

manually labeled intensity images centered on unique

slices. Manual classification is performed using subjective

judgment (e.g., Gagne et al. 2009; Lack and Fox 2012) to

organize the samples into the five distinct categories that

are described in section 2c: 1) midlatitude ‘‘MCS,’’

2) nonmeteorological reflectivity objects, or clutter

(Fig. 4a), 3) UCCs (Fig. 4b), 4) tropical systems (Fig. 4c),

and 5) synoptic systems (Fig. 4d). The choice of these

categories is based on observations of false-positive

associations using the PJ00 objective definition and

previous work that differentiated between precipitation

areas associated with MCSs and non-MCSs (e.g.,

Schumacher and Johnson 2005; Kunkel et al. 2012).

From this labeled population, the samples are orga-

nized into two groups of years: 1) the training data

(2006–13) and 2) the testing data (2003–05). The training

data are used to generate the machine-learning models,

whereas the testing data are used to simulate the perfor-

mance of thesemodels on previously unseen, independent,

data. Metrics designed to describe relationships between

false positives/negatives and true positives/negatives are

used to assess model performance (Gagne et al. 2009;

Lakshmanan and Smith 2010; Kolodziej Hobson et al.

2012). The classifiers are tuned for optimal performance

using subjective and objective hyperparameter selection

TABLE 2. Various threshold values used in this study to segment

MCSs in composite reflectivity images.

Threshold Value

Stratiform (dBZ) 20

Convection (dBZ) 40

Intense (dBZ) 50

Convective-region area (km2) 40

MCS core length (km) 100

Convective-region search radius (km) 6, 12, 24, and 48

Stratiform search radius (km) 48, 96, and 192
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(McGovern et al. 2017). For the purposes of this study,

several features (Table 3) are derived from intensity

information associated with each manually labeled

sample. The selection of features (Baldwin et al. 2005,

their section 2) is based on previous related research [see

Table 1 in Baldwin et al. (2005), Table 1 in Gagne et al.

(2009), and Table 1 in Lack and Fox (2012)] and is

performed using existing image-processing functions in

scikit-image.

b. Feature extraction and summary statistics

Approximately 4000 composite reflectivity images are

randomly selected (without replacement) from a pop-

ulation of 350 000 available images from 2003 to 2013 for

June–September. This period is chosen because it does

not overlap with the subjective validation period (May–

September 2015 and 2016). Visual examination of the

selected images is then performed to find cases that fit

one of the five possible classifications used in this study.

Although this process is subjective, it is based on well-

established taxonomies presented in the literature

(PJ00; Gallus et al. 2008; Gagne et al. 2009; Lombardo

and Colle 2010, etc.). When a case is found, the pixel

cluster (or clusters) is circled (features a and b in Fig. 5),

and a binary mask is generated by filling in the circle.

The pixel coordinates of this binary mask are then used

to extract intensity information from the corresponding,

unmodified composite reflectivity image. Each cluster

and its intensity information are then extracted and saved

as an image with dimensions equal to the bounding box of

the affiliated pixel cluster. Various features (Table 3) are

then extracted from each image and saved in a table with

the affiliated class label. In total, 3659 cases are generated

(Table 4).

After feature extraction is complete, summary statis-

tics for each class are created. Figure 6 illustrates several

selected features and the distribution of their values for

each of the five classifications. MCS samples have areas

that are larger than UCCs and clutter but smaller than

tropical and synoptic samples (Fig. 6a). The distribution

of tropical sample areas matches well with previously

reported distributions (e.g., Comstock 2011; Matyas

2014). Hitchens et al. (2012) and Fiolleau and Roca

(2013) suggest that MCS objects generally had areas

between 10 000 and 1 000 000km2, which also matches

well with the distribution of MCS sample areas (Fig. 6a)

and the theoretical spatial-scale range for MCSs (from

100km3 100 km to 1000km3 1000km;Markowski and

Richardson 2011). MCS samples have higher mean and

maximum intensity than all of the classes except UCC

samples (Fig. 6b). The higher reflectivity variance for

MCS and UCC samples is likely due to their propensity

to contain strong reflectivity gradients, resulting from

intense, convective cells or lines of cells surrounded by

regions of less-intense, stratiform precipitation (PJ00).

The range of mean reflectivity values for MCS samples

agrees with previously reported values (Fritsch and

Forbes 2001). Selected synoptic samples are generally

large areas of stratiform with isolated regions of em-

bedded convection (e.g., Fig. 4d), and the number of

TABLE 3. A list of the features extracted from intensity-image samples and the mean and standard deviation of their values. Importance

is derived from the ‘‘best’’ binary classifiers discussed in section 5c. The features are sorted from highest to lowest by mean importance

values. The abbreviations for best-performing machine-learning classifiers in the importance column are defined in section 5c.

Importance

Feature Definition Mean Std dev RFC GBC XGBC

Area Total area (km2) 54 131 74 355 0.15 0.16 0.16

Solidity Ratio of area to convex area 0.50 0.14 0.03 0.15 0.12

Intense area Area (km2) covered by pixels exceeding the

intense threshold

1414 2419 0.15 0.06 0.05

Minor axis length Length of the short axis of an ellipse fit to the

slice (km)

184.6 140.6 0.06 0.07 0.12

Convex area Area (km2) covered by convex hull 120 160 180 403 0.09 0.06 0.10

Intense–stratiform ratio Ratio of intense area to area 0.05 0.05 0.1 0.05 0.08

Convection area Area (km2) covered by pixels exceeding the

convection threshold

8174 12 688 0.13 0.04 0.05

Convection–stratiform ratio Ratio of convection area to area 0.19 0.13 0.04 0.06 0.07

Intensity variance Variance of pixel intensity 63.8 32.7 0.08 0.05 0.03

Major axis length Length of the long axis of an ellipse fit to the

slice (km)

417 347.8 0.07 0.07 0.02

Mean intensity Mean intensity of pixels 29.6 4.0 0.02 0.06 0.06

Eccentricity Noncircularity of the slice 0.84 0.14 0.01 0.04 0.07

Intense–convection ratio Ratio of intense area to convection area 0.17 0.14 0.04 0.04 0.03

Max intensity Max intensity of pixels 54.5 9.2 0.02 0.02 0.04
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stratiform-intensity pixels reduces mean reflectivity

values. MCS and UCC samples generally have a higher

fraction of pixels meeting or exceeding convective or

intense thresholds, relative to their total size (Fig. 6c).

MCS samples also tend to be less circular than tropical

and clutter samples but have similar eccentricity to that

of UCCs and synoptic samples (Fig. 6d). Indeed, high

values of eccentricity have been used to identify MCSs

and linear systems in previous work (Jirak et al. 2003;

Gagne et al. 2009). Overall, the relationships between

the distributions for each class are reasonable and agree

with the existing literature. Kolodziej Hobson et al.

(2012) report a higher mean reflectivity value for orga-

nized convective clusters (37 dBZ) than that in this study

(26 dBZ), but this is likely attributable to their choice

of a 30-dBZ storm identification threshold as compared

with the 20-dBZ threshold used in this study. The samples

also occur in the CONUS where one would expect. MCS

samples are largely gathered from the central plains and

Midwest (Fig. 7a), whereasUCC samples are gathered in a

higher frequency from the Southeast (Fig. 7b). Tropical

samples are clustered around the Gulf and Atlantic coasts

(Fig. 7c), in contrast to synoptic samples, which are largely

from the northern and northeastern CONUS (Fig. 7d).

Clutter samples are mostly located over radar-station lo-

cations (Fig. 7e). Overall, themost of the samples are from

events that occur over the midwestern CONUS (Fig. 7f),

but almost every location east of the continental divide is

represented.

c. Classifier training and testing

This study explores the utility of three RF and GB

classifier implementations: 1) ‘‘RandomForestClassifier’’

(RFC; scikit-learn 0.18), 2) ‘‘GradientBoostingClassifier’’

(GBC; scikit-learn 0.18), and 3) ‘‘XGBClassifier’’ (XGBC;

xgboost-python 0.6). The default settings for each im-

plementation are used unless otherwise specified (http://

scikit-learn.org; http://xgboost.readthedocs.io). After fea-

ture extraction is completed (see section 5b), the dataset is

split into two groups: training and testing data (Table 4).

FIG. 5. An example of hand labeling MCS slices in a composite reflectivity image. The black

lines are hand drawn around rainfall clusters that are determined to be MCS slices (labeled

a and b). The selected composite reflectivity image is from 1205 UTC 10 Jun 2003. Intensity is

denoted as in Fig. 1.

TABLE 4. Training and testing counts by classification and year.

MCS UCC Tropical Synoptic Clutter

Testing

2003 161 208 10 56 38

2004 249 231 37 59 35

2005 168 227 43 44 48

Total 578 666 90 159 121

Training

2006 97 113 12 61 108

2007 121 96 5 22 112

2008 136 75 56 25 12

2009 110 63 0 50 12

2010 110 92 7 31 7

2011 116 63 7 12 14

2012 74 53 7 14 10

2013 75 49 1 10 7

Total 839 604 95 225 282

Overall 1417 1270 185 384 403
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The purpose of this step is 1) to use the training data to

generate the classifiers and 2) to use the testing data to

determine how well the predictions of the classifiers will

generalize to previously unseen data. Class-specific

metrics are used to assess the performance of the clas-

sifiers because of the unbalanced nature of the dataset.

To be specific, the counts for the various labels range

from 185 (;5% of the dataset) to 1417 (;39% of the

dataset). These metrics are calculated by first reducing

the multiclass labels to binary labels (e.g., MCS or non-

MCS) and generating a confusion matrix (Table 5).

Then, two performance metrics—probability of de-

tection and probability of false detection—are calcu-

lated for each class (Table 6). These metrics assess

potential weaknesses in the model that may be missed

by reporting prediction accuracy alone, especially for

unbalanced datasets (Zheng 2015).

Automatic model tuning is performed by using a grid

search with cross validation on training data to explore

the parameter space (Elith et al. 2008). The approach

builds multiple classifiers using one or more parameters

selected from a user-defined range. Each classifier with

FIG. 6. Comparison of distributions of select features related to (a) area, (b) intensity, (c) relationships between

areas of different intensity, and (d) shape metrics for hand-labeled samples from each of the five classifications. All

y axes use a linear scale except (a), which uses a logarithmic scale. The feature names for each group are located on

top of the alternatively shaded areas. The box represents the interquartile range, with the black horizontal line

denoting the distribution’smedian and the black dot denoting themean. Thewhiskers represent values between the

5th and 95th percentiles, and the open circles are outliers.

JULY 2018 HABERL I E AND ASHLEY 1585



the selected parameter value(s) is trained with a portion

of the training data missing. In specific terms, this study

employs a ‘‘leave one year out’’ approach to determine

which data are removed for each iteration (Westerling

et al. 2002), where each step of cross validation removes

samples from an entire warm season. These data are

then used to test each model parameter permutation,

after which they are placed back into the training data

and a different year is removed. In other words, if a

particular iteration of cross validation uses samples from

2009 to test model performance, the models are trained

using data from 2006 to 2008 and from 2010 to 2013. This

FIG. 7. The spatial occurrence of hand-labeled samples gathered from randomly selected composite reflectivity

images for June–September from 2003 to 2013, corresponding to the following labels: (a) MCS, (b) UCC,

(c) tropical, (d) synoptic, (e) clutter, and (f) all samples.

1586 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 57



is repeated until each year is removed for each version of

the classifier (Elith et al. 2008), and the goal of this

process is to determine which model permutation would

generalize the best to data gathered from previously

unseen years.

The metric used to decide the best classifier configu-

ration is the Heidke skill score (HSS; Table 6; Wilks

2011) mean for each class averaged over the leave-one-

year-out cross validation (Table 7). An average HSS of

0.91 for all three classifiers is achieved using the fol-

lowing model configurations: 1) an RFC that uses 100

estimators, 2) a GBC that uses 500 estimators and a

learning rate of 0.01, and 3) an XGBC that uses 500

estimators and a learning rate of 0.01. These values

ranged from a low of 0.83 to a high of 0.96, depending on

which year was used to test the trained model for the

five-class label. To assess class-specific performance,

probability of detection and probability of false de-

tection were calculated using predictions on testing data

from the best classifiers (Table 8). MCS samples are

successfully detected between 91%and 93%of the time,

and non-MCS samples are assignedMCS labels between

5% and 9% of the time. All of the approaches struggled

to classify tropical samples, with as few as 62% of those

samples being assigned the correct label, despite a low

occurrence (,1%) of nontropical samples being assigned

a label of tropical. Of the misclassified tropical samples,

15% were assigned MCS labels and 21% were assigned

synoptic labels (Tables 9 and 10). Slightly better per-

formance was noted for UCC samples, with those sam-

ples being labeled correctly 87%–90% of the time, in

contrast to non-UCC samples being labeled as UCCs

4%–5% of the time. An ensemble of these three clas-

sifiers performs no better than its best member but

provides better performance than the worst member.

Using a similar grid search with a cross-validation

approach, binary classifiers are generated to differentiate

between MCS samples and non-MCS samples. The

purpose of this step is to determine whether a binary-

classification approach will result in better MCS

classifications than will the five-class approach. Again,

leave-one-year-out cross validation is used to find opti-

mal binary classifiers. An average HSS of 0.93 for all

three classifiers is achieved using the following model

configurations: 1) an RFC that uses 100 estimators, 2) a

GBC that uses 1000 estimators and a learning rate of

0.1, and 3) an XGBC that uses 1000 estimators and a

learning rate of 0.01. The yearly HSS for the binary

classifiers ranges from 0.89 to 0.97—an improvement

over the five-class approach, in particular for the lower

end of that range (Table 7). Binary-classification per-

formance for the testing data (Table 8) produced prob-

ability of detection values for MCS similar to those of

the five-class approach (91%–92%) but resulted in a

reduced probability of false detection (4%–5%). For

non-MCS labels, the probability of detection ranges

from 95% to 96% and the probability of false detection

ranges from 8% to 9%. The binary-classification ap-

proach reduces the percentage of tropical samples that

were labeled asMCS from 15% to 11%while raising the

number of MCS samples labeled as non-MCS from 6%

to 9% (Tables 9 and 10).

In addition, the three classifiers used in this study can

calculate relative feature importance because of their

use of decision trees as ensemble estimators (McGovern

et al. 2017). Values of relative importance are de-

termined for each feature by calculating the mean re-

duction in error rate over all estimators when that

feature is used for split decisions (Hastie et al. 2009).

These values are reported in Table 3 for each classifier,

sorted frommost important to least important. Themost

important features were related to area—in particular,

TABLE 5. Example of a confusion matrix for predictions and

actual labels for MCS cases and cases that are not MCS. [Adapted

from Table 3 in Gagne et al. (2014).]

Actual: MCS Actual: Not MCS

Prediction: MCS True positive (TP) False positive (FP)

Prediction: Not MCS False negative (FN) True negative (TN)

TABLE 6. Selected model-performance metrics and associated equations. Abbreviations are as described in Table 5. For the Brier loss

score, mcsi denotes the classifier confidence/probability of an MCS prediction for a sample and actuali is the binary label for that sample.

Metric Formula Explanation

Probability of detection
TP

TP1FN
When the actual label is MCS, how often does the

model predict MCS?

Probability of false detection
FP

FP1TN
When the actual label is not MCS, how often does

the model predict MCS?

Heidke skill score
2[(TP3TN)2 (FN3FP)]

(TP1FN)(FN1TN)2 (TP1FP)(FP1TN)
How well does the model perform relative to the

expected random agreement between actual labels

and model predictions?

Brier loss score
1

N
�
N

i51

(mcsi 2 actuali)
2 How reliable are probabilistic MCS predictions?
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the total area, convex area, and area covered by pixels

with intensities exceeding intense thresholds. This is not

surprising, because Fig. 6a illustrates the disparity in

area among the different classes. The ratio of the area

of intense pixels to the area of stratiform pixels also

shows a relatively high feature importance, suggesting

that the fractional region covered by intense pixels is

an important discriminating factor between MCS and

non-MCS samples.

Probabilistic predictions are also used to assess the

performance of the classifier. In contrast to ‘‘hard’’

predictions—that is, a label of MCS or non-MCS—

a ‘‘soft’’ prediction assigns a probability of every possi-

ble class for a given sample (e.g., 49% non-MCS and

51% MCS). For example, only 1% of decision trees/

estimators in the best-performing RFC predict MCS as

the label for the clutter sample in Fig. 4a, 3% of the

decision trees predictMCS for theUCC sample inFig. 4b,

and less than 1%of the decision trees predictMCS for the

synoptic sample in Fig. 4d. In contrast, for Fig. 4c, 93%

of the decision trees incorrectly predicted MCS for

the tropical sample. This mislabeling is likely due to

Hurricane Charley’s relatively small size (85 768 km2)

and unusually large area of intense pixel values (1820km2)

in comparison with other tropical samples.

The testing-data classification probabilities can be

used to approximate not only how often a sample is

mislabeled but how often a sample is mislabeled with a

high (e.g., Hurricane Charley) or low probability. First,

the model probabilities must be examined to determine

whether they are properly calibrated using the Brier loss

score (Brier 1950; Table 6). This score measures the

mean square error between the predicted probability

of a label and the actual label, and a lower Brier loss

score suggests that the model probabilities generally

match up well with the actual labels (see Fig. 8a in

Gagne et al. 2012). The lowest Brier loss score (0.042) is

achieved by an ensemble voting classifier comprising

votes from the best RFC, GBC, and XBGC (Fig. 8b).

High and low MCS probabilities are reliable, with some

overconfidence noted in probabilities around 0.4 and

some underconfidence noted around 0.7. Further ex-

amination of the relationship between classification

confidence/probability and correct labeling can be il-

lustrated by using a ‘‘receiver operating characteristic’’

(ROC) plot and reporting the area under the curve of

TABLE 7. Heidke skill scores produced by the best-performing model configurations trained using five-class and binary labels for an

RFC, a GBC, and an XGBC for each iteration of leave-one-year-out cross validation on training data (2006–13). The standard deviation

(std dev) and mean HSS for each of the three models are also reported.

2006 2007 2008 2009 2010 2011 2012 2013 Std dev Mean

Five-class label

RFC 0.96 0.90 0.86 0.95 0.95 0.87 0.90 0.90 0.04 0.91

GBC 0.96 0.90 0.85 0.95 0.93 0.88 0.86 0.95 0.04 0.91

XGBC 0.96 0.90 0.83 0.95 0.94 0.91 0.91 0.96 0.04 0.92

Binary label

RFC 0.95 0.89 0.93 0.97 0.95 0.91 0.91 0.89 0.03 0.93

GBC 0.95 0.89 0.95 0.96 0.97 0.90 0.90 0.94 0.03 0.93

XGBC 0.94 0.89 0.96 0.97 0.98 0.90 0.90 0.93 0.04 0.93

TABLE 8. Results for probability of detection and probability of false detection for the testing dataset (2003–05) produced from the

best-performing configurations of an RFC, a GBC, an XGBC, and an ensemble classifier of these models (ENS) trained using five classes

and binary classes.

Probability of detection Probability of false detection

RFC GBC XGBC ENS RFC GBC XGBC ENS

Five-class label

MCS 0.92 0.93 0.91 0.92 0.06 0.09 0.05 0.06

UCC 0.87 0.87 0.90 0.88 0.05 0.04 0.05 0.04

Tropical 0.62 0.63 0.71 0.68 ,0.01 ,0.01 ,0.01 ,0.01

Synoptic 0.92 0.92 0.93 0.94 0.01 0.01 0.02 0.01

Clutter 0.95 0.93 0.94 0.95 0.03 0.01 0.02 0.02

Mean 0.86 0.86 0.88 0.88 0.03 0.03 0.03 0.03

Binary label

Non-MCS 0.96 0.96 0.95 0.96 0.08 0.09 0.08 0.09

MCS 0.92 0.91 0.92 0.91 0.04 0.04 0.05 0.04

Mean 0.94 0.94 0.94 0.94 0.06 0.07 0.07 0.07
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probability of false detection versus probability of detection

(AUC; Fig. 8a). The purpose of this plot is to tweak itera-

tively the probability threshold for hard classifications to

explore how this modifies the sensitivity and specificity of a

model (Zheng 2015). If this threshold is set to a relatively

lowMCS-label prediction probability (e.g., 0.05), themodel

would be very sensitive—that is, any sample with an MCS

prediction probability exceeding 0.05 would be labeled as

anMCS and thus very few actualMCSswould be labeled as

non-MCS. The downside to this is that many non-MCS

samples may be incorrectly labeled as MCS if they have

some features that are similar to typical MCS features.

Conversely, a relatively high prediction probability thresh-

old (e.g., 0.95) would result in a very specificmodel—that is,

only samples with a classification probability exceeding 0.95

would be labeled as an MCS. For a well-calibrated model,

onewould be confident that themost of thehardMCS-label

predictions using this strict threshold would be correct. The

downside to this extreme is that many actual MCS samples

may be labeled as non-MCS. The ROC curve in Fig. 8a

shows that the distributions of MCS and non-MCS samples

along the prediction probability domain have little overlap.

This result suggests that the model probabilities sufficiently

separate the two types of samples. The ensemblemodel also

performs better than a few select scikit-learn (0.18) algo-

rithms, and much better than a ‘‘model’’ that predicts only

MCS labels with 100% confidence. In addition, model

performance is consistent for each of the three years in the

testing data (Fig. 8c), and probabilistic classifications are

reliable, in particular for probabilities above 0.90 and

probabilities below 0.20 (Fig. 8d). Inconsistent results inside

that range may be caused by a low number of samples.

These results suggest that no further model calibration is

needed and that the probabilistic predictions output by the

classifiers and ensemble are representative of the expected

model confidence.

6. 2015 and 2016 warm-season slice occurrence

The utility of the segmentation and classification pro-

cedure is explored by processing composite reflectivity

images every 15min for May–September of 2015. This

period was chosen because 1) May–September is when

the frequency of MCSs is the highest (Ashley et al. 2003;

Haberlie and Ashley 2016), 2) this period does not

overlap with the testing or training data from 2003 to

2013, and 3) the results can be compared with a

‘‘climatology’’ generated for the PECAN project (see

Fig. 1 in Geerts et al. 2017). In addition, the same period

for 2016 is included to assess year-to-year consistency in

the spatial frequency of slices. For each composite re-

flectivity image, the segmentation procedure extracts

qualifying MCS slice candidates and calculates their

features as described in Table 3. The values of these

features, as well as spatiotemporal intensity informa-

tion, are then stored in a database. This process is re-

peated using the thresholds defined in Table 2, where

the values of convective-region search radius (CRSR; 6,

12, 24, and 48km) and stratiform search radius (SSR; 48,

96, and 192km) are modified between each iteration.

This approach results in a total of 12 perturbations. This

process is similar to the methods used by studies such as

Clark et al. (2014) that explore the impact of varying

thresholds on track density (cf. their Figs. 3 and 4).

Further, various thresholds of classification prediction

probability are used to gauge how modifying these

values changes the spatial frequency of MCS slice can-

didates and MCS swaths. Feature information from

qualifying MCS slice candidates is passed into the en-

semble classifier, and the probability of an MCS label as

output by the classifier is then associated with each slice.

At this point, the database can then be queried to re-

trieve those slices that meet or exceed various proba-

bility values. These results are reported in Table 11.

In total, there were 1 518 093 slices generated from

the 12 perturbations for both warm seasons, including

743 212 from 2015 and 774 881 from 2016. We removed

970 slices, representing 290 different time stamps from

2015, because they did not have a major axis length that

was greater than or equal to 100km, resulting in a total

of 742 242 slices used in the following analysis. For 2016,

1179 slices, representing 341 time stamps, were similarly

removed, resulting in a total of 773 702 slices used.When

not using classifier predictions to stratify the dataset into

MCS and non-MCS samples, the count of qualifying

slices ranges from 43 443 to 84 198 for the 5-month period

TABLE 9. Confusion matrix for the testing dataset (2003–05)

produced from an ensemble model with members trained using

five classes.

Actual:

MCS UCC Tropical Synoptic Clutter

Prediction: MCS 539 47 12 2 0

UCC 36 589 0 0 6

Tropical 3 0 61 6 0

Synoptic 0 1 17 149 0

Clutter 0 29 0 2 115

TABLE 10. Confusion matrix for the testing dataset (2003–05)

produced from an ensemble model with members trained using

binary classes.

Actual: MCS Actual: Non-MCS

Prediction: MCS 528 41

Prediction: Non-MCS 50 995
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in 2015 and from 44997 to 88119 in 2016 (Table 11).

After using the probabilistic threshold employed by

the machine-learning algorithms to perform binary

classification (e.g., MCS probability $ 0.5), this range is

reduced to a minimum of 20 830 and to a maximum of

34 998, depending on the choices of search radius.

The same range for 2016 is 21 914–37 069. When using

stricter MCS probability thresholds of 0.9 and 0.95, the

slice count is further reduced (12 471–24 243 and 10 677–

19 852, respectively), and the range of slice counts as a

percentage of total slice counts is also reduced. For 2016,

this count is reduced to 13 277–25 970 for a threshold of

0.9 and 11 392–20 901 for a threshold of 0.95. This result

suggests that using a higher probability threshold is

FIG. 8. (a) ROC curves and AUC values from the testing dataset comparing the ensemble classifier (solid black line) with three scikit-

learn models with default parameters: logistic-regression (dashed lines), k-nearest-neighbor (dotted lines), and decision-tree (dot–dashed

lines) classifiers. Also included is an ‘‘all MCS’’ classifier (dashed gray line) that predictsMCS as the label for every sample. (b) Results for

the model calibration test, showing the relationship between the predicted probabilities of non-MCS (0) and MCS (1) samples, and the

distribution of probabilistic classifications per 0.1 bin from 0.0 (non-MCS) to 1.0 (MCS). Included are Brier loss scores for each model.

(c),(d) As in (a) and (b), respectively, but only for the ensemble model and broken down for each of the years in the testing dataset.
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capturing events that are less sensitive to changes in

search-radius values.

Spatial patterns of slice frequency using reflectivity

and probability thresholds for 2015 are illustrated in

Fig. 9. The shaded regions show the number of hours

that locations in the CONUS were under the stratiform

shield of a slice candidate with a 0.5 or higher probability

of being an MCS as output by the ensemble classifier.

Increasing the MCS predicted probability threshold to

0.95 generally limits the 40-h isopleth to the central

United States. Despite the general agreement with the

PECAN climatology (Geerts et al. 2017), there are re-

gional maxima that appear to be spurious from previous

work (Anderson and Arritt 1998; Ashley et al. 2003).

For example, the maximum centered on Florida is re-

lated to the diurnal cycle of land and sea breezes that

can generate bands of DMC (Lericos et al. 2002;

Rickenbach et al. 2015). The maximum centered on the

North Carolina coast is due to an unorganized convection

maximum associated with the Gulf Stream (Rickenbach

et al. 2015) and the incorrect labeling of Tropical Storm

Ana (Stewart 2016). Although the maximum along the

southwestern coast of Texas appears to be climatologi-

cally unusual, this region experienced several MCS

passages in May of 2015, resulting in extreme rainfall and

flooding (Wang et al. 2015). An encouraging result is that

the Texas regional maximum is retained in all of the per-

turbations when the MCS slice probability threshold is

increased. In contrast, the Florida and Carolina maxima

are reduced when this threshold is increased, suggesting

that the slices in these regions only have marginal simi-

larities to actual MCS slices that were used to train the

classifiers. For 2016, many of the same patterns are evident

(Fig. 10). For example, increasing the probability threshold

to 0.95 causes the 40-h isopleth to retreat north and west

away from the East andGulf Coasts. Of interest is that the

Texas maximum shows up in 2016 as well, even with the

higher probability thresholds. Upon further examination,

this region experienced multiple MCS passages again in

2016, particularly during late May and early June. To be

specific, two relatively slow moving MCSs produced al-

most constant precipitation in southeastern Texas from 26

to 28 May and three MCSs produced similar conditions in

this area from 2 to 4 June. Relative to 2015, the Midwest

and plains maximum shifted to the north and west, show-

ing that the segmentation and classification procedure is

capturing interannual variability in the occurrence of slices

with high MCS probabilities.

TABLE 11. The effect of varying CRSR (km), SSR (km), andMCS probability thresholds (0.0, 0.5, 0.9, and 0.95) on slice count and total

slice area (109 km2). Probabilities for each slice are predicted by an ensemble classifier for slices gathered fromMay to September in 2015

and 2016.

$0.0 $0.5 $0.9 $0.95

CRSR (km) SSR (km) Count Area Count Area Count Area Count Area

2015

6 48 43 443 0.79 20 830 0.61 12 471 0.47 10 677 0.42

6 96 41 120 1.10 25 177 0.96 18 361 0.81 15 984 0.74

6 192 39 666 1.44 25 379 1.23 19 339 1.02 16 685 0.90

12 48 54 008 0.93 23 447 0.70 14 519 0.55 12 539 0.50

12 96 51 318 1.27 28 153 1.08 20 333 0.91 17 578 0.82

12 192 49 827 1.62 28 393 1.35 21 112 1.09 17 830 0.95

24 48 70 443 1.15 26 825 0.84 17 231 0.67 14 923 0.61

24 96 67 312 1.52 31 642 1.24 22 705 1.04 19 188 0.92

24 192 65 756 1.86 31 940 1.49 23 014 1.17 18 838 1.00

48 48 89 371 1.46 30 204 1.03 20 417 0.84 16 914 0.74

48 96 85 780 1.85 34 998 1.46 24 725 1.17 19 852 1.00

48 192 84 198 2.20 34 975 1.66 24 243 1.25 18 711 1.02

2016

6 48 44 997 0.83 21 914 0.65 13 277 0.50 11 392 0.45

6 96 42 489 1.16 26 348 1.01 19 442 0.86 16 963 0.79

6 192 41 115 1.49 26 664 1.29 20 582 1.09 17 904 0.98

12 48 56 113 0.97 24 657 0.74 15 270 0.58 13 264 0.53

12 96 53 298 1.33 29 354 1.13 21 467 0.96 18 608 0.87

12 192 51 854 1.67 29 765 1.40 22 322 1.16 19 133 1.03

24 48 73 595 1.20 27 967 0.87 17 996 0.70 15 621 0.64

24 96 70 355 1.58 33 077 1.30 23 718 1.08 20 219 0.97

24 192 68 894 1.93 33 569 1.55 24 378 1.25 20 182 1.09

48 48 93 199 1.51 31 493 1.07 21 181 0.87 17 613 0.76

48 96 89 674 1.92 36 772 1.51 25 952 1.22 20 901 1.05

48 192 88 119 2.27 37 069 1.74 25 970 1.34 20 252 1.11
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FIG. 9. Spatial occurrence (h; shaded) of slices with an MCS probability of 0.5 or higher in 2015 during May–September for varying

convective-region and stratiform search radii. The solid line denotes the 40-h isopleth for slices with anMCS probability of 0.95 or higher,

and the dotted line denotes the 40-h isopleth for all qualifying slices. The CRSR values are (a)–(c) 6, (d)–(f) 12, (g)–(i) 24, and

(j)–(l) 48 km. The SSR values are (left) 48, (center) 96, and (right) 192 km.
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FIG. 10. As in Fig. 9, but for 2016.
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7. Discussion and conclusions

This study examined the utility of three machine-

learning algorithms for the problem of classifying MCSs

in composite reflectivity images. A segmentation ap-

proach specific to identifying MCSs was outlined. It is

composed of many steps, including 1) identifying re-

gions of convection with intense precipitation, 2) con-

necting nearby regions to generate cores of convection,

3) measuring the major axis length of the cores to de-

termine if they meet PJ00 criteria, and 4) associating

stratiform precipitation regions within a specified distance

of qualifying core regions. Select machine-learning algo-

rithms were trained and tested using feature information

from over 3000 manually labeled precipitation clusters

for the purpose of classifying these clusters as 1) a

midlatitude MCS, 2) an unorganized convective cluster,

3) a tropical system, 4) a synoptic system, or 5) ground

clutter or noise. Application-specific classification was

also explored by assigning the training and testing data

binary labels of MCS or non-MCS. Next, precipitation

clusters (slices) were automatically extracted from

composite reflectivity data from May to June of 2015

using varying association radii for connecting 1) con-

vective regions and 2) stratiform to qualifying core re-

gions. Features from these clusters were extracted and

used to generate predictions from an ensemble classifier

containing the three trained machine-learning algo-

rithms. Probabilistic predictions from the ensemble

classifier, along with the varying association radii, were

used to stratify the dataset. Statistics for these stratifi-

cations were generated, and frequency maps showed the

spatial occurrence of precipitation clusters that met the

various reflectivity and probabilistic thresholds.

This work affirmed the ability of machine-learning

algorithms to accurately classify regions of convection

on the basis of the subjective identification of events

(e.g., Baldwin et al. 2005; Gagne et al. 2009; Lack and

Fox 2012). Assessment of model accuracy was based on

metrics (Table 6) designed to examine the ability of the

trained algorithms to classify previously unseen labeled

testing samples. On a class-by-class basis for the testing

data, probability of detection ranged from 0.62 to 0.95

and probability of false detection ranged from less than

0.01 to 0.09, depending on the algorithm employed

(Table 8). A binary-classification approach (MCS or

non-MCS) produced better overall performance by re-

ducing the probability of false detection for MCS sam-

ples. An ensemble of the three classifiers produced

better probabilistic classifications than did output from

other machine-learning algorithms alone (Fig. 8), and

this performance was consistent across the three testing-

data years. These values of model performance exceed

those presented in previous work (Gagne et al. 2009;

Lack and Fox 2012). One of the reasons for this im-

provement could be the more sophisticated algorithms

that were employed in this study. For example, Lack and

Fox (2012) used a decision-tree algorithm to generate

classifications. Although decision trees allow a relatively

easy assessment of model behavior, they prioritize local

split decisions, which can result in suboptimal explora-

tion of the decision space (Breiman 2001). Further, both

Gagne et al. (2009) and Lack and Fox (2012) used

classifications with samples that were potentially very

similar to one another. For example, Gagne et al. (2009)

separated linear-system samples into leading, trailing,

and parallel stratiform subtypes. As a result, separating

samples on the basis of their features becomes more

difficult, which can lead to a reduction in model per-

formance. A similar issue occurred in this study, because

tropical systems commonly share similar attributes with

other classifications. To improve subtype classification,

even more sophisticated image classification approaches,

like convolutional neural networks (LeCun and Bengio

1995; Krizhevsky et al. 2012; Dieleman et al. 2015), may

be needed to improve performance. Future related work

will explore convolutional neural networks and similar

approaches for the purposes of increasing the accuracy

of precipitation cluster classification.

Application of the segmentation and classification

procedure to the 2015 and 2016 warm seasons produces

reasonable results that are comparable to existing cli-

matologies (Anderson and Arritt 1998; Ashley et al.

2003; Geerts et al. 2017). Although tracking of the

identified slices was not demonstrated in this paper

(tracking will be discussed in Part II), the spatial oc-

currence of MCS-like regions of precipitation should

still be clustered in climatologically favored regions of

MCS activity. Increasing the MCS probability threshold

(and thus increasing the specificity of the models) re-

sulted in a reduction of MCS activity along the eastern

Gulf and Atlantic coasts (Figs. 9 and 10). Stricter MCS

probability thresholds appear to result in more agree-

ment between the automated segmentation and classi-

fication output (Figs. 9 and 10) and location of the

training and testing samples of MCS (Fig. 7a), despite

not including features that encode spatial information.

This result illustrates a potential limitation of this study:

the machine-learning predictions are based on the au-

thors’ interpretation of the subjective definition of an

MCS. The results suggest that this may be particularly

important when working with banded convection in the

southeastern United States. Users of this framework

could modify the balance between the probability of

detection and the probability of false detection or the

hand-labeling approach to be more appropriate for their
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needs. In that theme, this study should motivate future

work to combine the objective and subjective definitions

of MCS in a way that emphasizes computational ap-

proaches over manual identification. One physical

mechanism common to MCSs that may inform this ex-

ploration is the perceived interaction between a cold

pool and warm inflow, caused in part by the decay of

relatively short-lived DMC and its outflow generating

new DMC (PJ00). This critical process is not encoded

into the objective definition, despite its widespread

ubiquity in MCS studies (Table 1). We do not claim that

the methods described in this study fully discriminate

between events that exhibit this process and those that

do not. Indeed, to specifically identify proxies of spa-

tiotemporal processes such as interactions between cold

pools and warm inflow, more complex machine-learning

models such as long short-term memory recurrent neu-

ral networks (Hochreiter and Schmidhuber 1997) may

be required. Also, removing non-MCS slices from con-

sideration during the tracking procedure reduces the

complexity of spatiotemporally associating candidate

MCS slices. This topic is discussed in in Part II of this

paper. The process described here (in Part I), combined

with the tracking detailed in Part II, will ultimately allow

for an objective, automated, spatiotemporal assessment

of CONUS MCS activity.
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