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This research assesses the utility and validity of using simulated radar reflectivity to
detect potential changes in linear and nonlinear mesoscale convective system (MCS)
occurrence in the Midwest United States between the early and late 21st century
using convection-permitting climate simulation output. These data include a control
run and a pseudo-global warming (PGW) run that is based on RCP 8.5. First, using a
novel segmentation, classification, and tracking procedure, MCS tracks are extracted
from observed and simulated radar reflectivity. Next, a comparison between
observed and the control run MCS statistics is performed, which finds a negative
summertime bias that agrees with previous work. Using a convolutional neural net-
work to perform probabilistic predictions, the MCS dataset is further stratified into
highly organized, quasi-linear convective systems (QLCSs)—which can include bow
echoes, squall lines, and line echo wave patterns—and generally less-organized, non-
QLCS events. The morphologically stratified data reveal that the negative MCS bias
in this region is largely driven by too few QLCSs. Although comparisons between
the control run and a PGW run suggest that all MCS events are less common in the
future (including QLCS and non-QLCS events), these changes are not spatially sig-
nificant, whereas the biases between the control run and observations are spatially
significant. A discussion on the importance and challenges of simulating QLCSs in
convection-permitting climate model runs is provided. Finally, potential avenues of
exploration are suggested related to the aforementioned issues.
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1 | INTRODUCTION

The Intergovernmental Panel on Climate Change's Fifth
Assessment Report (IPCC, 2013) states that heavy precipita-
tion events are likely to increase in frequency during the 21st
century. The report, however, makes broad generalizations
regarding regional thunderstorm activity (Tippett et al., 2015),
admitting that deep moist convection (DMC) occurrence is
highly variable and sensitive to remote (teleconnections) and
local forcings (Diffenbaugh et al., 2008; Kendon et al., 2014).
Compounding these issues, the report relied on coarse-
resolution global circulation models (GCMs), which generally
cannot resolve phenomena with important meso-γ
(i.e., <10 km) features. This is particularly concerning for the
central and eastern Conterminous United States (CONUS),
where mesoscale convective systems (MCSs) produce a large

percentage of warm-season precipitation (Ashley et al., 2003;
Houze, 2004). In addition, quasi-linear MCSs (QLCSs),
which include highly organized system morphologies such as
bow echoes, squall lines, and line echo wave patterns, regu-
larly produce tornadoes, hail, nontornadic damaging winds,
and derechos (Trapp et al., 2005), as well as extreme precipi-
tation rates (Stevenson and Schumacher, 2014).

Previous modelling work has suggested that high-
resolution (i.e., ≤4 km spatial and 1-hr temporal) runs of
regional climate models (RCMs) are required to accurately
reproduce the location, morphology, evolution, and intensity
of MCSs and other DMC phenomena (Weisman et al., 1997;
Herman and Schumacher, 2016). This is because meso-γ pro-
cesses that commonly occur within sub-hourly timescales—
such as those associated with the interaction of individual
DMC updraughts—are crucial to the development and
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sustenance of MCSs. Thus, even relatively high-resolution
GCM simulations (e.g., 102 km spatial and 6-hr temporal) are
unable to explicitly simulate these important mechanisms
(Prein et al., 2015). Using GCMs or other relatively coarse-
resolution model output as initial and boundary conditions to
drive a RCM (dynamical downscaling; Trapp et al., 2011;
Gensini and Mote, 2014; Liu et al., 2017) is one widely used
approach used to examine DMC phenomena in the context of
long-term (i.e., ≥10 years) climate simulations. Dynamically
downscaled climate simulations have been found to reason-
ably reproduce observations of rainfall and convective haz-
ards associated with DMC phenomena (Trapp et al., 2011;
Gensini and Mote, 2014; Liu et al., 2017; Prein et al., 2017a).

In the central and eastern CONUS, heavy rain events asso-
ciated with DMC are becoming more frequent (Kunkel et al.,
2013), and climate simulations suggest that this trend should
continue through the 21st century (Tippett et al., 2015). This
trend is cause for concern, as three of the most extreme drought
and flood years in recent memory (1993, 1998, 2012) resulted
in combined losses exceeding $100 billion in the United States
(Smith and Katz, 2013). These changes may be caused, in part,
by the modification of MCSs in a changing climate (Feng
et al., 2016; Prein et al., 2017b). Changes in important meteo-
rological factors that could influence future MCSs evolution
include low- and mid-level specific humidity, instability
(i.e., CAPE), the frequency of the Great Plains low-level jet,
and cold pool development and strength (Harding and Snyder,
2015; Feng et al., 2016; Tang et al., 2017; Prein et al., 2017b).
These factors may work in concert to generate MCSs that are
larger, produce more rainfall, and exhibit faster forward propa-
gation (Prein et al., 2017b), although the spatial pattern of these
changes may vary (Rasmussen et al., 2017).

The purpose of this study is to address the following
research questions: (a) Can long-term climate simulations rec-
reate an observed climatology of Midwest CONUS QLCSs?;
and if so (b) Does Midwest CONUS QLCS occurrence change
in a late-21st century climate simulation? To answer these
questions, data generated by two long-term (13 years), high-
resolution (4 km) pseudo-global warming (PGW) (Ikeda et al.,
2010) climate simulations (Liu et al., 2017) encompassing the
CONUS are compared and analysed using an MCS and QLCS
detection and tracking framework. Specifically, simulated com-
posite reflectivity from both a control simulation (CTRL) and a
PGW simulation are used to explicitly examine potential
changes in QLCS occurrence in the central and eastern
CONUS. The model data and approach are described in
Section 2. The use of simulated reflectivity to identify QLCSs
in climate simulation output is novel and extends recent work
that identified MCSs using accumulated grid-scale precipitation
(Prein et al., 2017a, 2017b). To assure precision and compara-
bility, a segmentation, classification, and tracking procedure is
uniformly applied to observed (OBS), CTRL, and PGW com-
posite reflectivity to detect QLCS and non-QLCS events
(Haberlie and Ashley, 2018a, 2018b). Since QLCS produce
multifaceted hazards and are an important part of the eastern
CONUS hydroclimate (Houze, 2004; Harding and Snyder,

2015), these results may have far-reaching implications for
many aspects of society. In addition, the event-identification
machine learning technique described in this article could be
modified for many different applications in climate science.

2 | DATA AND METHODOLOGY

These simulations employed original and modified ERA-
interim (Dee et al., 2011) data as lateral boundary conditions to
drive the Weather Research and Forecasting (WRF) model. The
simulation using unmodified ERA-interim data serve as an
early 21st century control, with a study period from October
2000 to September 2013, inclusive. To simulate a potential late-
21st century scenario, the unmodified ERA-interim data are per-
turbed using a PGW approach (Ikeda et al., 2010). The pertur-
bation value for each of these variables is calculated by finding
the mean multimodel (cf. Table 1 in Liu et al., 2017) difference
between late 21st century (2071–2100) and late 20th and early
21st century (1976–2005) values derived from RCP 8.5 climate
simulations (IPCC, 2013). Accumulated grid-scale precipitation
and hourly simulated composite reflectivity derived from CTRL
has been shown to reasonably reproduce spatial patterns of con-
vection in the central and eastern CONUS (Rasmussen et al.,
2017), although rainfall exhibits an overall negative bias during
meteorological summer (Liu et al., 2017). For a comparative
observational dataset, the National Operational Weather Radar
(NOWrad™) dataset—which are national mosaics of composite
reflectivity—are used to verify the occurrence of MCSs and
QLCSs. These data have ~2-km horizontal resolution and have
been used in many radar climatology studies (Matyas, 2010;
Fabry et al., 2017). Previous work has also compared structures
within simulated reflectivity factor and observed reflectivity
data, despite the well-known biases (Lawson and Gallus, 2016;
Matyas et al., 2018). The study period runs from January 2000
to September 2013, with an emphasis on the months of June,
July, and August from 2001 to 2013. The research focuses on
the Midwest CONUS due to its high level of MCS activity
(e.g., Ashley et al., 2003) and this region is defined as in Prein
et al. (2017a). To limit biases due to projection and resolution
issues, NOWrad data from the top of each available hour are
first interpolated to the modelled grid points (see: https://rda.
ucar.edu/datasets/ds612.0/) using a nearest neighbour approach.
All distances and areas are then calculated assuming a pixel size
of 4 × 4 km (16 km2).

MCSs are identified in the composite reflectivity images
using a combination of image segmentation and machine
learning (McGovern et al., 2017) approaches (Haberlie and
Ashley, 2018a, 2018b). Automated methods are used instead
of subjective methods because of the large number of events
(N = 104) and hourly images (N = 106) included in the study.
This approach is based on the Parker and Johnson (2000) defi-
nition of MCSs—namely, that they are contiguous swaths of
precipitation that last for at least 3 hr and are generated by
connected or nearly connected convective updraughts. First,
convective (≥40 dBZ) cells with intense (≥50 dBZ) rainfall
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are identified and aggregated into regions based on a 24-km
search radius. Connected regions with a major axis length
exceeding 100 km are associated with stratiform (≥20 dBZ)
precipitation regions within 96 km (slices). Using an ensem-
ble machine learning classifier, each slice is then given a
probabilistic classification of MCS (e.g., areal, leading/trail-
ing/no stratiform, squall lines, hybrid, etc.) or non-MCS
(e.g., ground clutter, tropical systems, synoptic systems, and
unorganized convective clusters). MCS slices are associated
spatiotemporally into MCS swaths by checking for spatiotem-
poral overlap (as shown in Figure S1 in Appendix S1, Sup-
porting Information). Ties are broken by connecting the most
similar slices together (Hungarian method; Munkres, 1957;
Lakshmanan et al., 2013). To improve the specificity of
swaths (i.e., only examine swaths very likely to be MCSs), a
0.95 MCS probability (PMCS) threshold is employed, and
slices below this threshold are not considered in the swath-
building process. Once swaths are generated, only those
swaths that last at least 3 hr (Parker and Johnson, 2000) are
considered MCS swaths (herein PMCS95 swaths).

QLCSs (and non-QLCSs) are identified within the MCS
dataset using an image classification algorithm that assigns a
probabilistic label (herein, PQLCS) ranging from 0 (very
likely a non-QLCS) to 1 (very likely a QLCS). This is per-
formed using a convolutional neural network (CNN; Kriz-
hevsky et al., 2012) with an architecture similar to a single
CNN described in Dieleman et al. (2015) (as reported in
Table S1, Supporting Information). The choice of using a
CNN instead of traditional machine learning algorithms is
motivated by the similarity of features extracted from the
QLCS and non-QLCS samples (as shown in Figure S2 in
Appendix S1), which can result in relatively poor classifica-
tion performance for those types of algorithms.

To generate training and testing data, nearly 3,000 slices
are randomly selected from PMCS95 swaths generated from
observed composite reflectivity data. These slices are then
hand-labelled as QLCS or non-QLCS. QLCS events are sub-
jectively identified using the following criteria: (a) convective
regions within slices had to be longer than 100 km and
(b) these convective regions have to be at least three times as
long as they are wide (Trapp et al., 2005; Gallus et al., 2008).
In addition, the spatial structure of slices identified as QLCS
are subjectively judged as belonging to one of the following
pre-existing categories: trailing stratiform, leading stratiform,
or parallel stratiform (Parker and Johnson, 2000). In total,
1,087 QLCS and 1,835 non-QLCS slices are subjectively
classified by the authors, and of this population, approxi-
mately 80% of the samples were used for training purposes,
leaving 198 QLCS and 387 non-QLCS to assess model per-
formance. The CNN is trained by extracting pixels from a
256 × 256 km region centred on the most intense portion of
the slice (“storm patches”; Gagne et al., 2017). Data augmen-
tation (Krizhevsky et al., 2012; Dieleman et al., 2015) is per-
formed using the training data by: (a) randomly rotating the

images by ±20� and (b) randomly scaling the width and
height of the images by ±20%. Data augmentation is used
when training CNNs to prevent overfitting and improve test-
ing performance (Krizhevsky et al., 2012), essentially pre-
venting the model from memorizing the training data
(Dieleman et al., 2015). For this article, the result is the orien-
tation and size of the MCS is de-emphasized, whereas the rel-
ative spatial structure of rainfall intensity is emphasized.

The trained model correctly predicts 370 out of 387 non-
QLCS slices (96%) and 172 out of 198 QLCS slices (87%).
This suggests that model predictions of QLCSs may be slightly
conservative, since although 9% of non-QLCS slices are
labelled as QLCSs (false positives), 13% of QLCS slices are
labelled as non-QLCSs (false negatives). The model produces
an area under the curve of 0.98 and a brier loss score of 0.054,
which is a marked improvement of false positive/false negative
balance and probabilistic classification reliability over the more
traditional machine learning algorithms (as shown in Figure S3
in Appendix S1). In addition, a subjective examination of
events labelled with high (as shown in Figure S4 in Appendix
S1) and low (as shown in Figure S5 in Appendix S1) QLCS
probabilities (herein PQLCS) reveals that the algorithm produces
reasonable predictions. In general, samples with high PQLCS
(i.e., ≥0.95) exhibited linear structures (bow echoes, line echo
wave patterns, leading line trailing stratiform, etc.), whereas
samples with low PQLCS (i.e., ≤0.05) exhibited more nonlinear
MCS structures (areal, broken line, etc.). Using the predictions
from this model, an MCS swath is considered a QLCS when it
is assigned a PQLCS greater than or equal to 0.50 for at least
two consecutive hours (Gallus et al., 2008). The spatial occur-
rence of swaths is upscaled from the 4 to 40-km grids by calcu-
lating the mean occurrence within the larger grid. In addition,
40-km grids were chosen to reduce the influence of small-scale
noise in the OBS data (ground clutter, anomalous propagation,
etc.), while also being comparably sized with quantitative pre-
cipitation forecast guidance grids and similar studies
(e.g., Clark et al., 2014; Novak et al., 2014).

3 | EVENT DAY OCCURRENCE

The statistics of QLCS, non-QLCS, and combined events
(i.e., MCSs) are examined for the Midwest CONUS. The
following analyses report counts of MCS, QLCS, and non-
QLCS days (herein, event days), which is defined as any
1800 UTC to 1800 UTC period during which an event
occurred within the study area or grid cell. From October
2000 to September 2013, there were 1,800 OBS, 1,738
CTRL, and 1,850 PGW MCS event days. Approximately
49% of all OBS MCS event days occur during meteorologi-
cal summer (June–August), compared to 29% in the spring
(March–May), 18% in the fall (September–November), and
4% in the winter (December–February). July is the most
active month for OBS MCSs, with 17% of all MCS event
days occurring in this month. For QLCSs, there were 1,200
OBS, 743 CTRL, and 848 PGW event days. The frequency
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of OBS QLCS event days peaks during June (19%), whereas
the frequency of OBS non-QLCS event days peaks during
July (19%). Similarly, the frequency of CTRL MCS, QLCS,
and non-QLCS event days peaks during June (17, 25, and
18%, respectively). Running counts of annual MCS event
days show general agreement between OBS and CTRL from

January until August (Figure 1a). QLCS event day counts
begin to diverge sooner (Figure 1b), and results in 29 fewer
QLCS event days by September 1, with most of that differ-
ence occurring within the June–August period (24 QLCS
event days per year). When examining non-QLCS event
days, CTRL exhibits a general positive bias compared to

FIGURE 1 Mean counts of days (1800 UTC to 1800 UTC) that experienced at least one MCS or MCS subtype (2001–2012) in the Midwest CONUS for:
(a) MCS, (b) QLCS, and (c) non-QLCS for the OBS, CTRL, and PGW runs. The filled regions represent the interquartile range over the 12-year period for
cumulative swath count totals on each day of the year. Years 2000 and 2013 were not included because the entire year is not available for the CTRL and
PGW datasets [Colour figure can be viewed at wileyonlinelibrary.com]
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OBS (Figure 1c), with a mean of 17 more non-QLCS days
by September 1. In contrast to QLCS event day counts, the
mean count of non-QLCS event days differs by seven event
days per June–August period for OBS and CTRL.

The diurnal cycle of MCSs, QLCSs, and non-QLCSs
counts during June, July, and August in the Midwest exhibit
a characteristic nocturnal maximum and midday minimum
(Figure 2; Geerts et al., 2017; Prein et al., 2017a, 2017b). Of

FIGURE 2 Counts of days where at least one of the following events occurred at a particular hour (UTC) during the summertime (2001–2013) in the
Midwest CONUS: (a) MCS, (b) QLCS, and (c) non-QLCS for the OBS, CTRL, and PGW runs. The filled regions represent the interquartile range over the
13-year period for swath count totals for each hour of the day. Year 2000 was not included because summertime data are not available for the CTRL and
PGW datasets [Colour figure can be viewed at wileyonlinelibrary.com]
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the 1,196 available June, July, and August (JJA) days during
the study period (2001–2013), mean OBS MCS event day
frequency peaks at 0700 UTC (48%) and reaches a minimum
at 1900 UTC (19%). OBS QLCS event day frequency peaks
at 0600 UTC (33%), and minimizes at 1700 UTC (12%).
Although OBS non-QLCS event days also peak overnight
(0800 UTC) and reach a minimum in the middle of the day
(1900 UTC), the maximum difference in the frequency of
event day counts is only 12%, compared to 21% for QLCSs.
For CTRL, MCS event day frequency peaks at 0300 UTC
(39%), in comparison to CTRL QLCS and non-QLCS event
day frequency, which also peaks at 0300 UTC (17 and 28%,
respectively). Despite similar diurnal distributions of events,
the absolute hourly event day counts between OBS and
CTRL show some disparity, particularly during the evening
and overnight hours (0000–1200 UTC). The maximum dif-
ference of roughly 15 fewer CTRL MCS event days per year
occurs at 1000 UTC, with the minimum difference occurring
at 2200 UTC (less than 1 fewer OBS MCS event days/year).
For QLCSs, the disparity peaks at 0800 UTC with a differ-
ence of roughly 18 fewer CTRL QLCS event days per year,
and minimum difference at 1900 UTC (5 fewer CTRL
QLCS days per year). For non-QLCS, the maximum differ-
ence occurs at 0000 UTC, with CTRL producing roughly
12 more non-QLCS event days compared to OBS. The mini-
mum difference occurs at 0900 UTC, where the mean count
of non-QLCS event days per year differs by less than 1.

These disparities prompted further examination of the
spatial structure of the data. Since MCS activity peaks in
the summer, and the largest biases were found during this
period, the spatial analysis will focus on the June–August
period (Figure 3). QLCS counts for both CTRL
(Figure 3a) and OBS (Figure 3b) show a relative peak in
activity in the Midwest CONUS that extends to the South-
ern Plains. Despite this, the absolute counts for OBS
QLCSs event days are much higher than CTRL QLCS
event days, with a maximum difference over eastern Iowa
of 91 QLCS event days (7 QLCSs event days per year).
OBS non-QLCS counts (Figure 3d) are greater than CTRL
non-QLCS (Figure 3c) counts in the Southern Plains and
Southern Mississippi River Valley (up to 2 more non-
QLCS days per year). CTRL non-QLCS counts are greater
than OBS non-QLCS counts elsewhere, especially south
and east of the Appalachians (up to 6 more non-QLCS
days per year) and in the northwest Midwest (up to 4 more
non-QLCS days per year). In general, the proportion of
MCS events that are QLCSs in CTRL (Figure 3e) is much
lower compared to OBS (Figure 3f ). For all grids in the
Midwest, the majority of OBS MCS days experience at
least one QLCS. This proportion maximizes in Illinois,
Iowa, Wisconsin, Missouri and Michigan where over 70%
of MCS days experience a QLCSs (the opposite pattern
exists for non-QLCSs). In contrast, the maximum propor-
tion of CTRL MCS events that are QLCSs occurs in

central Texas, and many locations in the Midwest have
proportions below 50%. In both CTRL and OBS, the ratio
of QLCS to non-QLCS events is much lower in the South-
east CONUS compared to the Midwest.

To test if these spatial differences are significant, yearly
distributions of counts are compared between OBS and
CTRL for each grid cell using a Kolmogorov - Smirnov
(KS) test (Wilks, 2006). p-Value significance thresholds are
determined using the false discovery rate (FDR) method
with an αFDR of 0.10 (Wilks, 2016) to account for issues
related to multiple hypothesis tests. For many locations in
the Midwest, CTRL QLCS counts are underestimated by
70–85% compared to OBS, and these differences are signifi-
cant, particularly in the southeastern portion of the study
area (Figure 4). In contrast, CTRL non-QLCS events exhibit
fewer significant differences in the southeast portion of the
Midwest, whereas the differences are largely significant in
the northwest portion of the Midwest. When comparing
CTRL and PGW (i.e., early vs. late-21st century event
counts), the differences between the event day counts of
QLCSs (Figure 4c) or non-QLCSs (Figure 4d) days exhibit
no field significance.

4 | DISCUSSION

QLCS day counts in the Midwest are generally underesti-
mated in CTRL compared to OBS, whereas non-QLCS
day counts are generally overestimated in both datasets.
However, the results suggest that the negative bias in sum-
mertime CTRL MCS events in the Midwest (Prein et al.,
2017a) is driven by the model generating too few QLCS
event days. As a result, the June, July, and August negative
precipitation bias in this region (Liu et al., 2017), as well
as disparities related to radar-derived reflectivity bins
(Rasmussen et al., 2017) are likely owed to this deficiency.
Prein et al. (2017a) offer a number of reasons for these
biases related to CTRL MCSs, including: (a) failed
upstream MCS initiation, (b) weaker large-scale forcing,
(c) poor representation of soil–atmosphere interactions,
and (d) a summertime dry bias. The attribution of these
biases to poor QLCS representation may offer additional
insight into this issue. QLCSs (bow echoes, leading line
trailing stratiform, line echo wave patterns, etc.) are not
represented well in numerical simulations compared to
other MCS subtypes (Adams-Selin et al., 2013; Snively
and Gallus, 2014; Lawson and Gallus, 2016), and their
accurate representation in RCMs is an area of ongoing
research. For example, Lawson and Gallus (2016) found
that WRF runs failed to produce bow echoes in the major-
ity of sensitivity tests, despite using many different micro-
physics schemes and initial and lateral boundary condition
perturbations. These events typically begin as isolated con-
vective cells that grow upscale and form surface cold pools
(Corfidi, 2003; Keene and Schumacher, 2013). New
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convective cells form on the leading edge of the cold pool,
effectively sustaining the system through reinforcing, com-
plimentary, mechanisms in supportive atmospheric envi-
ronments (Rotunno et al., 1988; Coniglio et al., 2012).
This process can be inferred by a “bowing” line of convec-
tion in radar images (Corfidi, 2003; Lawson and Gallus,
2016). Poor representation of cool pools or their “in situ”
forcing may cause a variety of issues, including decreased
longevity and weaker convective updraughts (Rotunno
et al., 1988; Corfidi, 2003). In addition, composites of
MCSs and their environments in multiyear climate simula-
tions show that MCSs can significantly influence their
large-scale environment (Yang et al., 2017), which can
result in longer lived events.

Since QLCSs make up the majority of summertime
MCSs in the Midwest CONUS, it is crucial for these events
to be accurately represented in climate simulations, as they
are an important component of the hydroclimate over critical
agricultural regions (Ashley et al., 2003; Prein et al., 2017a,
2017b). In addition, many QLCSs produce tornadoes, wind,
hail, and/or flooding in the Midwest CONUS (Trapp et al.,
2005; Gallus et al., 2008), and future severe weather occur-
rence may be misrepresented if QLCS structures are not
accurately reproduced. Future work should: (a) examine
additional long-term, convection-permitting, climate simula-
tions to see if this issue is isolated or widespread;
(b) examine the long-term behaviour of cold pools associ-
ated with summertime Midwest QLCS events; and

FIGURE 3 Summertime (June–August) spatial occurrence (mean per 40 × 40 km grid; 2001–2013) of days (1800 UTC–1800 UTC) that experienced at
least one (a) CTRL QLCS, (b) OBS QLCS, (c) CTRL non-QLCS, and (d) OBS non-QLCS. In addition, the percentage of total MCS days that experienced at
least one MCS subtype is illustrated for (e) CTRL and (f ) OBS. The Midwest CONUS, as defined by this study, is delineated by a black outline [Colour
figure can be viewed at wileyonlinelibrary.com]
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(c) explore the differences (if any) between how non-QLCSs
and QLCSs modify the large-scale environment using
synoptic-scale composites of events (e.g., Yang et al., 2017).
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