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ABSTRACT

This research uses image classification and machine learning methods on radar reflectivity mosaics to

segment, classify, and track quasi-linear convective systems (QLCSs) in the United States for a 22-yr period.

An algorithm is trained and validated using radar-derived spatial and intensity information from thousands of

manually labeledQLCS and non-QLCS event slices. The algorithm is then used to automate the identification

and tracking of over 3000 QLCSs with high accuracy, affording the first, systematic, long-term climatology of

QLCSs. Convective regions determined by the procedure to be QLCSs are used as foci for spatiotempo-

ral filtering of observed severe thunderstorm reports; this permits an estimation of the number of severe storm

hazards due to this morphology. Results reveal that nearly 32%ofMCSs are classified as QLCSs. On average,

139 QLCSs occur annually, with most of these events clustered from April through August in the

eastern Great Plains and central/lower Mississippi and Ohio River Valleys. QLCSs are responsible for a

spatiotemporally variable proportion of severe hazard reports, with a maximum in QLCS-report attribution

(30%–42%) in thewesternOhio and centralMississippi RiverValleys. Over 21%of tornadoes, 28%of severe

winds, and 10% of severe hail reports are due to QLCSs across the central and eastern United States. The

proportion of QLCS-affiliated tornado and severe wind reports maximize during the overnight and cool

season, with more than 50% of tornadoes and wind reports in some locations due to QLCSs. This research

illustrates the utility of automated storm-mode classification systems in generating extensive, systematic

climatologies of phenomena, reducing the need for time-consuming and spatiotemporal-limiting methods

where investigators manually assign morphological classifications.

1. Introduction

The quasi-linear convective system (QLCS) is a type

of MCS (cf. Houze 2018) that features a convective line

or line segments that are much longer than they are

wide. The QLCS (Weisman and Davis 1998) includes

many system types that have been labeled as squall-line

MCSs (Newton 1950), leading-line/trailing-stratiform

MCSs (Houze et al. 1990; Parker and Johnson 2000), line

echo wave patterns (LEWPs; Nolen 1959), persistent

elongated convective systems (PECSs; Anderson and

Arritt 1998; Jirak et al. 2003), and bow echoes (Fujita

1978; Przybylinski 1995; Weisman 2001). These linear-

oriented convective morphologies occur across a broad

spectrum of environmental conditions, sometimes de-

veloping quickly in environments with strong, external

forcing (Newton 1950; Heymsfield and Schotz 1985; Dial

et al. 2010), and, in other cases, more slowly through the

upscale growth of individual cells and subsequent in-

ternal, cold pool dynamics (Weisman 1992; Weisman

and Rotunno 2004) and/or gravity waves (Carbone et al.

1990; Crook et al. 1990; Carbone et al. 2002). Though the

QLCS has not received asmuch attention as the supercell

in the literature, there has been considerable growth in

observational, field campaign (e.g., Davis et al. 2004;

Geerts et al. 2017), climatological, numerical modeling,Corresponding author: Walker S. Ashley, washley@niu.edu
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and theoretical research assessing the extratropical

QLCS since the 1980s. The rise and breadth of this work

stems from increasingly better remote sensing of these

events, as well as the development of high-resolution

modeling of these and other storm types. Through these

extensive research efforts [cf.Wakimoto (2001),Markowski

andRichardson (2010), Trapp (2013), andHouze (2018) for

overviews], we now understand that the QLCS is a dis-

tinct threat to life and property via the hazards it pro-

duces and that the QLCS poses significant operational

and forecast challenges (Brotzge et al. 2013).

By using image classification and machine learning

techniques on an unprecedented 22 years of composite

radar reflectivity data stretching from 1996 to 2017, this

research develops and employs an automated QLCS

classification system to investigate the spatiotemporal

characteristics of these events and their hazards across

the United States. Such baseline detection and clima-

tological work provides a fundamental understanding

of where and when these events occur, an assessment

of their contribution to the overall convective hazard

landscape, and encourages continued efforts into un-

derstanding all aspects of the QLCS. This study is an

extension of recent efforts that built a long-term, con-

terminous United States (CONUS) hydroclimatology

of extratropical MCSs (Haberlie and Ashley 2019)

using image classification and machine learning ap-

proaches (Haberlie and Ashley 2018a,b). Our research

also builds on earlier works that have assessed QLCSs,

but over shorter periods of study or over smaller, re-

gional domains (e.g., Parker and Johnson 2000; Burke

and Schultz 2004; Trapp et al. 2005; Gallus et al. 2008;

Duda and Gallus 2010), or that have produced lon-

ger, but subjective, assessments of the systems using

tornado and significant severe thunderstorm report-

based detection of morphologies (e.g., Smith et al.

2012, 2013; Thompson et al. 2012, 2013; Anderson-

Frey et al. 2016). This study affirms some of the find-

ings from these earlier efforts, while offering new

discoveries and advancing a different methodological

detection template to provide a robust and systematic

capturing of these events—whether for operational or

research purposes.

2. Methodology

a. Difficulties in delineating MCSs and QLCSs

For the purposes of this extratropical-based research,

an MCS is defined as an assemblage of convective

(i.e., $40dBZ) cells identified in composite radar re-

flectivitymosaics that persists for at least 3h and contains a

contiguous or semicontiguous convective area of at least

100km along the system’s major axis (Parker and Johnson

2000; Houze 2004; Haberlie and Ashley 2019). This

definition was established through the dynamical rea-

soning presented by Parker and Johnson (2000)—that is,

the cumulative effects of convective cells interacting on

scales of 100km or greater begin to force mesoscale cir-

culations and features after a few hours (Haberlie and

Ashley 2018a,c, 2019). The Parker and Johnson crite-

ria are the foundation to many articles that have in-

vestigated MCSs (e.g., Cohen et al. 2007; Gallus et al.

2008; Hane et al. 2008; Coniglio et al. 2010; Haberlie

and Ashley 2018a,b,c, 2019).

The QLCS is a well-recognized, important, and

unique subset of the wide-ranging MCS classification

(Fig. 1). Convective classification schemes havematured

over the decades, though, definitions of the QLCS form,

which have been based on radar reflectivity imagery,

have consistently been subjective, vague, and/or in-

consistent, especially in their implementation. During

the 1980s, QLCSs were known largely as squall lines

(Bluestein and Jain 1985) or bow echoes (Fujita 1978).

Though Bluestein and Jain (1985) is one of the most

cited papers in the MCS literature and was one of the

first to explore system taxonomy from a radar perspec-

tive, the article did not provide explicit criteria for de-

fining these events and their subtypes. Generally, the

term squall line has been replaced by the more encom-

passing QLCS, which was nomenclature first employed

byWeisman and Davis (1998); conversely, the bow echo

is still used operationally and in research to describe the

‘‘bowing out’’ of thunderstorms along a system’s leading

edge due to internal thermodynamic and kinematic

processes (Fujita 1978; Przybylinski 1995). The lack of

objective criteria in defining these morphologies, espe-

cially for early periods in the literature, is likely due to

the insufficient quality of remote sensing facilities and

networks at the time of study, as well as the bewildering

spectrum ofMCS andMCS subtypes that makes ‘‘binning’’

and classifying these events difficult and time-consuming

even with high-quality, remotely sensed data. Simply,

nature is complex and often rebuffs ‘‘binning’’ or simple

one-dimensional classification systems (LaDue and

LaDue 2008), but classification is necessary for de-

veloping our understanding and application of that

understanding of the phenomenon studied (Doswell

and Burgess 1988).

Classification of possible QLCSs can be particularly

complex when linear-oriented systems are constituted

by semidiscrete cells that contain stratiform precipita-

tion linking the cells in a line. As an MCS initiates, cells

may develop simultaneously while remaining relatively

isolated from each other. Lines may result when these

discrete cells combine and grow upscale due to cold pools
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(Weisman 1992; Weisman and Rotunno 2004) or fron-

tal or external boundary forcing, forming a contigu-

ous convective line (Gallus et al. 2008; Grams et al.

2012; Smith et al. 2012); however, in other cases, these

cells may remain relatively discrete, yet in close prox-

imity, while configured in a linear fashion with or

without stratiform precipitation ‘‘bridging’’ the cells

[cf. linear hybrid in Smith et al. (2012) or cells in bro-

ken squall line in Schoen and Ashley (2011)]. Other

definitional considerations and complexities include:

What reflectivity threshold separates stratiform from

convective? How long a contiguous or semicontiguous

line must be sustained to be considered a QLCS?

What amount of time a convective line must be sus-

tained in an MCS for the event to be labeled as a

QLCS? How do you count QLCSs when the systems

break apart and/or two (or more) systems merge? At

what point does a QLCS begin and end? These

questions and other intricacies lead to confusion as to

what precisely constitutes a QLCS, and, therefore,

how to objectively define these occurrences. Due to

these difficulties, we recommend and employ an al-

gorithm that is initially informed by basic QLCS cri-

teria as defined in the literature and the assessments of

the authors (and input from others listed in acknowl-

edgments) that have decades of collective experience

assessing MCSs and their subtypes using radar imag-

ery. Thereafter, using specific thresholds, QLCSs may

be systematically segmented, classified, and tracked

using automated methods. Automated methods are

requisite due to the large number of radar mosaics

(;8 3 105) needed to assess in a study spanning over

two decades and an area over 5 3 106 km2.

b. Development of a QLCS identification and
tracking algorithm

QLCSs were classified initially using the methods

outlined in Haberlie and Ashley (2018c; also, cf. 2018c

supplement)1 and following the definitions espoused by

Parker and Johnson (2000), Trapp et al. (2005), Gallus

et al. (2008), and Grams et al. (2012). Using radar re-

flectivity imagery, a QLCS is defined as anMCS that has

instantaneous convective ($40dBZ) regions that are

longer than 100 km andmust be at least 3 times as long as

they are wide. In our detection of these events, we use

the ;2-km, 15-min resolution National Operational

Weather Radar (NOWrad) dataset, which comprises

quality-controlled mosaics of composite reflectivity over

the CONUS. These data have been used in numerous

climatologies to detect and represent many phenomena,

including MCSs (e.g., Parker and Knievel 2005; Matyas

2010; Fabry et al. 2017; Haberlie andAshley 2018c, 2019).

First, MCS events are identified in the NOWrad mo-

saics using image segmentation and machine learning

approaches as demonstrated in Haberlie and Ashley

(2018a,b). The image segmentation process aggregates

convective pixels ($40dBZ) within 6 km of each other

into contiguous regions, and those regions that have a

major axis length of 100km or greater are attached to

surrounding stratiform ($20dBZ) precipitation within

48km (slices). The machine learning process then assigns

a probabilistic classification based on how closely the

FIG. 1. Dual spectrums revealing the archetypal structures of deep, moist convection.

As discussed in Doswell (2001), relatively small-scale cells (top spectrum) are the

building blocks of larger convective systems (bottom spectrum). As environmental shear

increases, convective organization and severe storm hazard (i.e., hail, tornadoes, and

wind) risk increase.

1 https://rmets.onlinelibrary.wiley.com/action/downloadSupplement?

doi510.1002%2Fjoc.5880&file5joc5880-sup-0001-AppendixS1.docx.
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attributes of each slice agree with those of thousands

of manually identified MCS and non-MCS samples

(Haberlie and Ashley 2018a). To minimize the number

of false positives (tropical storms, comma-heads, bright

bands, and frontogenesis-induced precipitation bands

produced by synoptic systems, etc.), only those slices with

an MCS probability of 0.95 or greater are considered

initially in this study. Qualifying slices are then spatio-

temporally concatenated to produce swaths (i.e., the

footprint of a precipitation event), and the subset of

swaths that last for at least 3 h are considered MCS

swaths. From the population of MCS swaths, expert

pattern recognition is performed on randomly selected

slices for the purpose of categorization based on com-

posite radar reflectivity appearance. The spatial struc-

ture of slices identified as a QLCS are subjectively

judged as belonging to one of the following preexisting

categories identified by Parker and Johnson (2000):

trailing stratiform, leading stratiform, or parallel strati-

form. In contrast, non-QLCS slices are subjectively

judged to belong to a nonlinear category (areal, broken,

etc.; Gallus et al. 2008). Approximately 3000 slices are

assigned one of two labels by the authors: QLCS (1087

samples) or non-QLCS (1835 samples). In total, 80% of

these samples are used to train an image-processing,

artificial intelligence system known as a convolutional

neural network (CNN; Krizhevsky et al. 2012), and 20%

are used to estimate the model’s performance.

We use the CNN to identify QLCS (and non-QLCS)

events from the overall MCS population. ACNN is used

because it produces better accuracy than more tradi-

tional machine learning approaches for the image clas-

sification application used in this study (Haberlie and

Ashley 2018c). The model was trained by extracting

pixels in a 256 km 3 256 km region centered around the

most intense portion of the sample slices. During the

training process, data augmentation (Krizhevsky et al.

2012; Dieleman et al. 2015) is performed by randomly

applying slight modifications to the training images to

improve model generalization (translations, rotations,

etc.; Krizhevsky et al. 2012). After the CNN is trained

with the augmented data, it agrees with the testing data

96% of the time for non-QLCS slices and 87% of the

time for QLCS slices. Further inspection of these results

indicates the model may be somewhat undercounting

QLCSs, as 9% of non-QLCS slices were labeled as

QLCSs, but 13% of QLCS slices were labeled as non-

QLCSs. Subjectively, the classifier was found to produce

reasonable results, as samples with a QLCS probability

of $0.95 tended to contain linear structures, while sam-

ples with a QLCS probability of #0.05 were generally

nonlinear MCS structures (Haberlie and Ashley 2018c).

Using the predictions from this model, MCS swaths were

consideredQLCS swaths when their slices are assigned a

QLCS probability of 0.95 at least once during two con-

secutive hourly periods (Gallus et al. 2008; Haberlie and

Ashley 2018c). The methods described are used to

identify QLCSs—such as in Fig. 2—in hundreds of thou-

sands of instantaneous radar depictions, removing the

subjective and laborious activity required in the past by

researchers. Admittedly, our methods are likely con-

servative (i.e., we may ‘‘miss’’ smaller QLCS-like events

due to relatively high standards affiliated with segmen-

tation and classification in our methods; cf. Haberlie and

Ashley (2019) section 4 discussion to this point) when

delimitating QLCSs compared to others, at least as dis-

cussed and illustrated in the literature [cf. Smith et al. (2012)

their Fig. 3a and Klimowski et al. (2003)’s section 2b].

Additionally, we rely solely on radar reflectivity data,

so any storm mode that requires additional data (e.g.,

velocity couplets denoting embedded mesocyclones and,

thus, potential supercells) may not be identified.

Like Haberlie and Ashley (2019), QLCS occurrences

are calculated on a map by counting the number of

algorithm-determinedQLCS swaths that overlap a pixel

location (2 km 3 2 km). Due to the sparse radar cover-

age and beam blockage issues that plague theWSR-88D

network west of the Continental Divide, we focus on

event detection in CONUS regions east of the Divide.

c. Attributing severe thunderstorm reports to QLCSs

To attribute severe storm reports toQLCSs, wemerge

the QLCS slice information developed from our algo-

rithm with reports from the Storm Prediction Center’s

GIS-ready, severe report database (SVRGIS; http://

www.spc.noaa.gov/gis/svrgis). We make no adjustments

for the quality and reliability, or lack thereof, in the

recorded storm data. We invite the reader to consider

and recognize the assorted biases and nonmeteorological

issues that have been described in the literature (cf. Kelly

et al. 1985; Weiss et al. 2002; Doswell et al. 2005; Trapp

et al. 2006; Brooks and Dotzek 2007; Smith et al. 2013;

Strader et al. 2015; Edwards et al. 2013, 2018; etc.). It is

important to note that ‘‘non-QLCS’’ slices may (and of-

ten do) exist within the life cycle of a QLCS swath. This is

an implementation detail to improve the continuity of

swaths. However, storm reports in these non-QLCS slices

are not considered ‘‘QLCS’’ reports.

Portions of the objective attribution process employed

are illustrated on a sample QLCS swath in Fig. 2. In some

cases—especially with fast moving events or events with

outflow that extends in advance of the precipitating line—

storm reports may occur in regions with no radar re-

flectivity. We tested several buffers around qualifying

QLCS slices to capture such events, and determined

that a 20-km (;12-mi) buffer around the slice [e.g., see
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dashed polygon (ii) in Fig. 2] was the most effective at

gathering reports that may lie ahead of the slice, while

reducing the possibility of sweeping up reports due to

isolated convection ahead of QLCS. Despite efforts to

reduce captures of isolated cells immediately ahead of

the line, the method still includes some reports due to

cells, especially as cells were merging with the line (e.g.,

French and Parker 2012) or so-called tail-end Charlie

events (Branick 1996). This false capturing, which we

discuss further in section 4b, tended to occur sparingly

on high-end severe days where both supercell andQLCS

structures occurred in the same environmental ingredi-

ents space.

We do not differentiate between QLCSs that have

embedded supercell or ‘‘classic’’ mesocyclone-like

structures—however those may be defined—from those

that do not exhibit such features (cf. Smith et al. 2012).We

make no differentiation between hazards produced by so-

called QLCS mesovortices (e.g., Trapp and Weisman

2003) from line-embedded, supercell-induced tornadoes,

even thoughwe acknowledge that processes that engender

tornadoes in QLCSs can vary depending on the environ-

ment and mesocyclone typology. In the end, a tornado

produced by a more classical mesocyclone, supercell-like

structure embedded in a QLCS is still a tornado induced

by a parent QLCS.

Overall, any reports that occurred within 67.5min

of the corresponding slice and that were within the

buffered region were qualified QLCS reports. Spatial

analyses related to SVRGIS data are presented on an

80 km 3 80km grid, which is equivalent to the SPC’s

probabilistic hazard outlooks and verification products.

d. Methodology limitations

Current automated approaches to identifying MCS

and QLCS events cannot match the skill of an experi-

enced and engaged research or operational meteorolo-

gist with several datasets at their disposal. Perhaps the

largest contributing factor is the well-known limitation

of tracking approaches when dealing with splitting and

merging events (Lakshmanan and Smith 2010). Further,

Haberlie and Ashley (2018b) show examples of how the

approach that is used when identifying events of interest

can influence the resulting climatology of these events.

These methods are also limited by the quality of the

underlying data and any spatial and systematic hetero-

geneities included in those data (Parker and Knievel

2005). Radar data are not immune to heterogeneities in

data quality, and there are well-known issues relating to

radar coverage, anomalous signals, and other consider-

ations (Smith et al. 1996; Parker and Knievel 2005;

Fabry et al. 2017). In particular, areas with sparse radar

coverage (e.g., the High Plains) are more likely to have

lower detection sensitivity, as both segmentation and

tracking are influenced by missing radar returns below

1800 or even 3000m. Additionally, since this work did

not consider any data beyond radar reflectivity, it is

limited in the ability to detect line- or cluster-embedded

FIG. 2. An example QLCS swath (labeled i) from 1130UTC 18 Jun 2010 to 0230 UTC 19 Jun 2010. Gray and blue dots are all the severe

reports that were attributable to this QLCS swath. A visual example of the report selection process is provided for the slices that occurred,

from left to right, at 1300, 1700, and 2100 UTC 18 Jun 2010 and 0200 UTC 19 Jun 2010. A 20-km buffer is generated around each QLCS

slice (e.g., ii; dashed polygon) to gather reports affiliated with that slice. Any reports that meet the following criteria are denoted by the

large blue dots: 1) occurred within 67.5min of the corresponding slice and 2) are within the buffered region.
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supercell structures. This is a deviation from the

methods of Smith et al. (2012), who also considered

velocity data in addition to radar reflectivity. As a result,

any embedded supercell structures that can only be

detected using velocity data may not be identified in this

work. However, as we show, our approach still produces

results that agree with previous work, with a few ex-

ceptions. The authors implore the reader to assess the

results presented herein with these important caveats

in mind.

Despite these problems, the strength of automated

approaches is the consistent application of identification

and tracking rules (however limited they may be), as

well as the ability to process millions of radar images

(with all the affiliated issues) in a reasonable amount

of time. The tracking approach used in this paper (Haberlie

and Ashley 2018b) allows a great deal of customization.

Presently, a strict MCS probability and a small seg-

mentation search radius applied to slice candidates limit

the dataset to some of the most intense MCS cases.

Reducing this MCS standard to include more marginal

events would likely involve more hurricanes/synoptic

systems/etc., particularly in the Southeast United States

(Haberlie and Ashley 2018b). Thus, there is the added

heuristic of lowering the sensitivity to MCS and QLCS

events (i.e., fewer MCS and QLCS events included),

while increasing specificity (i.e., more non-MCS and non-

QLCS events disqualified).

The association of severe weather reports with radar-

identified events also increases the complexity of the

method. For example, even perfectly positioned severe

weather reports can exist kilometers from the nearest,

legitimate, radar reflectivity returns. Several search radii

were tested to balance capturing events associated with

QLCSs, while excluding reports that were near QLCSs,

but were clearly affiliated with a different storm mode.

This issue appears to be most prevalent with significant

tornado events. The mixed-mode and widespread cover-

age of radar returns during many of these events pose a

challenge to our approach. We discuss a manual inspec-

tion of these cases in section 4b, as well as our inter-

pretation of those findings. Again, we urge the reader to

assess the results of this paper in the context of those

stratified accuracies.

3. QLCS occurrences

a. Spatiotemporal QLCS climatology

There were 3064QLCSs identified across the CONUS

during the 22-yr study period, with a mean (median) of

139 (138) per year. The annual frequency of the events

was variable with a high of 178 in 2008 and a low of 101

in 1999 (Fig. 3), with the variability driven largely by

late spring and early summer QLCS populations

(Fig. 4). A linear least squares fit reveals a small

increase in the number events during the period

(10.5 yr21), but, due to the short period of record, it

is difficult to discern the significance of this trend.

Despite the increasing trend, four of the five lowest

QLCS count years are during the latter period of

record—from 2012 to 2015.

QLCSs occur primarily in the central and eastern

CONUS (Fig. 5a). There may be cases in the western

CONUS (e.g., Ladue 2002; Corfidi et al. 2016b) that our

methodology did not capture, but this absence is due to

insufficient radar coverage—requisite for our algorithm—

west of and along the Continental Divide, as well as

in the High Plains (cf. Fig. A1 in Parker and Knievel

2005). There are two distinct QLCS maxima (.16

QLCS yr21) over the central CONUS: 1) far eastern

Great Plains and western Ozark Plateau and 2) cen-

tral Mississippi and western Tennessee River Valleys.

Broadly, the central and eastern CONUS contains a cli-

matological prevalence of ingredients—lower-tropospheric

moisture, CAPE, adequate shear, continual thermal forc-

ing, and the existence of other features (e.g., shortwave

troughs, extratropical cyclones and their fronts, nocturnal

boundary layer wind maxima, drylines)—that are sup-

portive of thunderstorms that can initiate and growupscale

intoMCS structures, includingQLCSs (Johns andDoswell

1992; McNulty 1995; Carbone et al. 2002; Parker and

FIG. 3. Cumulative frequency diagram of the mean (bold) and

individual yearly QLCS counts (dashed) from 1996 to 2017 for the

CONUS. Years with the highest (2008) and lowest (1999) QLCS

counts are noted.
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Ahijevych 2007; Cohen et al. 2007; Trier et al. 2010;

Gensini andAshley 2011). The east-central Great Plains

and western Ozark maximum is, at least in part, due to

diurnally forced convection that initiates in the High

Plains and the Rocky Mountains owing to, for example,

terrain, dryline, or frontal forcing. As this convection

moves east due to the westerlies, it can grow upscale and

mature into intense systems that are sustained by mi-

grating extratropical systems (Whittaker and Horn

1984; Eichler and Higgins 2006), the nocturnal bound-

ary layer wind maximum (Higgins et al. 1997; Kumjian

et al. 2006; Coniglio et al. 2010), and/or internal pro-

cesses such as the formation of cold pools and gravity

currents (Carbone et al. 2002; Trier et al. 2010).

FIG. 4. Total yearly (bottom row) and monthly QLCS counts (grid cells), as well as monthly mean QLCS counts (far right column), from

1996 to 2017 for the CONUS.

FIG. 5. (a)Mean annual QLCS swath occurrence and (b) proportion ofMCSs that areQLCSs (shaded) andmean

annualMCS swath occurrence (solid contours) from 1996 to 2017. Occurrences and percentages are calculated on a

2 km 3 2 km grid.
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The central Mississippi and western Tennessee River

Valleysmaximum is due to a combination of factors and,

moreover, a relatively frequent overlap of environments

supportive of QLCS formation and sustenance. First, as

extratropical cyclones develop and mature east of the

Rocky Mountains, they produce maxima in convection

in phases coincident with the diurnal cycle and their

migration due to the westerlies across the central and

eastern CONUS (Carbone et al. 2002). Convective

phases in extratropical cyclones can include diurnally

forced convection as the cyclone and affiliated upper-

level trough first encounters moisture and instability

along the western edge of the Great Plains and, during

the next day, a second phase of convection as instability

increases in the warm sector of the extratropical cyclone

due to diurnally driven insolation and surface heating.

These situations can spur multiday episodes of severe

weather across the CONUS (Ashley et al. 2005, 2007;

Shafer and Doswell 2011). Additionally, Carbone et al.

(2002) discovered coherent, warm-season precipita-

tion signals across the CONUS, including the central

Mississippi and western Tennessee River Valleys region,

that were made up of successive MCSs that appeared to

be forced by convectively generated mechanisms such as

trapped wavelike disturbances or, possibly, mesoscale

convective vortices (MCVs; e.g., Trier and Davis 2007).

In comparison to other regions (e.g., Great Lakes, Great

Plains, Southeast), the central Mississippi and western

Tennessee River Valleys region has a much longer envi-

ronmental period during the year where ingredients

necessary for the formation and sustenance of systems

may be juxtaposed. For instance, the region is affected by

high-shear, low-CAPE environments supportive of

QLCSs during the cool season (Burke and Schultz 2004;

Sherburn and Parker 2014; Sherburn et al. 2016), migra-

tory extratropical cyclones and their fronts and prefrontal

troughs during the cool and transition seasons (Whittaker

andHorn 1984; Eichler andHiggins 2006; Bengtsson et al.

2006; Lukens et al. 2018) that can externally forceQLCSs

(Newton 1950; Stoelinga et al. 2003), and awide spectrum

of environments during the warm season that can be

supportive of upscale growth due to system-internal forc-

ing, such as cold pools (Johns 1984; Stensrud and Fritsch

1993; Coniglio et al. 2004; Guastini and Bosart 2016).

Seasonally, the frequency of QLCSs increases appre-

ciably inMarch (Fig. 4) with a spatial count maximum in

the mid-South (Fig. 6) and peaks during the warm sea-

son in June across the Great Plains and Midwest. On

average, over 27 QLCS events occur in June, with six of

the seven most active months during the 22-yr clima-

tology during this month. The latter part of the warm

season—July and August—has notably fewer QLCS

counts than May and June. The roughly 30% drop in

QLCS counts from June to July may be a result of re-

duced baroclinity and traveling extratropical cyclones

that occur during the mid and latter part of the warm

season as the westerlies shift poleward toward and, even-

tually, into Canada (Rudeva and Gulev 2007; Belmecheri

et al. 2017). In addition, a smaller region of the CONUS is

supportive of organized convection and its sustenance

during the latter warm season due to increasing capping

strength under a seasonal anticyclone often anchored in

the south or southwest CONUS (Galarneau et al. 2008;

Myoung and Nielsen-Gammon 2010a,b,c; Ribeiro and

Bosart 2018). This thrusts the primary corridor of QLCSs

into the Corn Belt and Upper Midwest during July and

August, as poleward-directed, instability ‘‘underrunning’’

(Doswell and Bosart 2001) commences beneath the

ridge and mesoscale, upper-level, potential vorticity

disturbances—known as ‘‘ridge rollers’’—can initiate and

sustain convective systems (Bosart et al. 1999; Galarneau

and Bosart 2006; Wang et al. 2011). This warm-season,

high-occurrence corridor is frequented by northwest flow

(NWFL) severe weather outbreaks and other synoptic

patterns that can produce QLCSs (Johns 1982, 1984;

Wang et al. 2011; Guastini and Bosart 2016; Pokharel

et al. 2019) and progressive derechos that, by contempo-

rary definitions, are produced by linear systems (Coniglio

and Stensrud 2004;Guastini andBosart 2016; Corfidi et al.

2016a). After September, QLCSs become relatively in-

frequent until spring, averaging around, or, in most cases,

less than, five per month during the cool season. Events

during this season are confined largely to the mid-South

and Gulf Coast, where limited, but sometimes sufficient,

moisture can coincide with forcing due to migratory ex-

tratropical cyclones to generate long-lived, linear mor-

phologies (Geerts 1998; Parker and Ahijevych 2007). In

some cases, these cool-season cyclones generate high-

shear, low-CAPE environments supportive of QLCSs

that produce hazards that are operationally difficult to

detect and warn (Thompson et al. 2012; Smith et al. 2012;

Brotzge et al. 2013; Sherburn et al. 2016; Anderson-Frey

et al. 2016). As with the broader MCS classification

(Schumacher and Johnson 2006; Carbone and Tuttle

2008; Haberlie and Ashley 2019), QLCSs exhibit a dis-

tinct diurnal pattern, tending to initiate in the late af-

ternoon and evening hours (Fig. 7a) and dissipate near

sunrise (Fig. 7b).

b. MCSs and the QLCS subclassification

On average, 32%ofMCSs areQLCSs; uniquely, there

is not much variation in this proportion over the study

period, with the percentage of MCSs that are QLCSs

within 29% and 38% in any given year (Fig. 7c). The

proportion of MCSs that are QLCSs does decline over

the year, from a broad maximum of 30%–40% of MCSs
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FIG. 6. As in Fig. 5a, but for mean monthly QLCS counts.
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from January to June to a minimum of just over 20% in

September and December (Fig. 7d). MCS populations

do not have as dramatic a decline in numbers from June

to July as was illustrated with QLCSs; indeed, the MCS

population seasonal peak is much broader and shifted to

later in the warm season, including relatively high counts

in both July and August. This suggests that highly or-

ganized MCS structures tend to wane during the latter

warm season, whereas less-organized, nonlinear MCSs,

such as back-building and areal forms, become more

commonplace. Declining baroclinity and resultant weak-

ening of low- and deep-layer shear (cf. Fig. 2 in Gensini

and Ashley 2011), ingredients often necessary for linear

structures (Weisman and Rotunno 2004; Coniglio et al.

2006), is at least one reason for the reduced frequency

of QLCSs during this latter warm-season period, which

otherwise features abundant instability (cf. Fig. 3 in

Gensini and Ashley 2011). Diurnally, the proportion of

MCSs that are QLCSs is greatest during the late evening

and overnight hours (Figs. 7a,b), which may be, in part,

due to increasing low-level shear found during the

nocturnal period in many areas of the central CONUS

due to the low-level jet (Shapiro et al. 2016; Geerts et al.

2017); this nocturnal shear is important for system or-

ganization and sustenance (French and Parker 2010;

Blake et al. 2017).

Broadly,MCSs (Fig. 5b) and theMCS subclassification,

QLCS (Fig. 5a), have similar spatial patterns of occur-

rence. The proportion ofMCSs that are QLCSs is greater

than 50% for large expanses of the central CONUS

(Fig. 5b), with two broad maxima (60%–70%) found

throughout Upper Midwest (Minnesota and Wisconsin)

and in the southern and south-central Great Plains

(Arizona, Oklahoma, and Texas). Seasonally (not shown),

FIG. 7. Counts and percentage of MCSs that are QLCSs for the following temporal attributes: (a) initiation by hour, (b) termination by

hour, (c) annual, and (d) monthly.
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these percentages peak near 80% in the southern Great

Plains andArklatex regions in the spring, portions of the

Midwest in the summer, and the southern Appalachians

in the winter.

4. QLCS-attributable severe thunderstorm reports

There is an extensive body of literature that has im-

plicated the QLCS—or equivalent in other parlance

(e.g., squall line, bow echo, etc.,)—as a source for severe

thunderstorm hazards, most notably tornadoes and

damaging winds. Much of this literature is summarized

by Trapp et al. (2005) for tornadoes, and Wakimoto

(2001) for nontornadic winds. Trapp et al. (2005) were

the first to systematically approach the question of how

many tornadoes are produced by linear system mor-

phologies, as the scientific focus during the latter twen-

tieth century had trended to supercells; though, this

focus was certainly justifiable as supercells produce

most strong-to-violent tornadoes (Smith et al. 2012) and

supercell-related tornadoes are responsible for over 90%

of tornadodeaths in theCONUS(Schoen andAshley 2011;

Brotzge et al. 2013). QLCS-related hazards, especially

tornadoes, are being detected with increasing efficiency

due to many reasons, including: recent superresolution,

polarimetric, and sampling improvements to theWSR-88D

network (Kumjian 2013; Chrisman 2014; Thompson

et al. 2017); the dissemination and operational use of

Terminal Doppler Weather Radar in NWS offices

(Vasiloff 2001); awareness and results from field cam-

paigns, as well as observational and numerical modeling

studies, assessing mesovortices in QLCSs (e.g., Trapp

and Weisman 2003; Atkins et al. 2005; Trier and Davis

2007); emphasis on training forecasters to anticipateQLCS

mesovortexgenesis (e.g., Schaumann and Przybylinski

2012); and improvements in postevent surveying, including

dissemination and assessments of very high-resolution

aerial and satellite imagery of postevent landscapes (e.g.,

Skow and Cogil 2017). Complexity remains in identifying

whether some of the circulations found on radar and nar-

row damage tracks uncovered posthumously are produced

by tornadoes or low-level meso-g-scale vortices, such as

those described inTrapp andWeisman (2003), Schenkman

et al. (2012), and Flournoy and Coniglio (2019). These

hazard-inducing circulations can be embedded within a

broader region of nontornadic, ‘‘straight-line’’ winds that

produce equivalent damage (e.g., Atkins et al. 2005;

Wakimoto et al. 2006; Schenkman and Xue 2016),

making hazard delineation difficult, especially for

those postevent assessments with limited damage in-

dicators or resources. Simply, where exactly the cutoff

is for what constitutes tornadic damage is often diffi-

cult and is scenario- and opinion-dependent, even in

high-end, tornadic supercell cases (Wurman et al. 2014;

Wakimoto et al. 2016).

In this section, we employ the historical severe thun-

derstorm report record in conjunction with the QLCS

detection and tracking algorithm to estimate the amount,

proportion, and spatiotemporal attributes of severe and

significant severe hazards produced by QLCSs for the

22-yr period of record.We restrict our analysis to a large

domain most frequented by QLCSs, which is a domain

well sampled by radar. In addition, we eliminated a

small proportion of storm reports from consideration

in this domain since there was no corresponding radar

imagery at the time of a report, making morphology at-

tribution difficult. Overall, 93.4% (95.9%) of the storm

reports in the CONUS (storm report study domain)

database are sampled using this method.

a. QLCS severe thunderstorm hazard occurrence

Nearly 20% of severe thunderstorm reports in the

central and eastern CONUS are produced by QLCSs

(Table 1). The proportion of storm reports due to

QLCSs is highest in theMississippi, Ohio, and Tennessee

River Valleys, with over 40% of storm reports in the

lowerOhioRiverValley due to thismorphology (Fig. 8a).

Seasonally, the proportion of QLCS-severe storm reports

is highest from October through March, with more than

40% of reports due toQLCSs in November, January, and

February. Spatially, the proportion of QLCS storm

reports is highest in the winter, with large expanses of the

southernGreat Plains, Ohio River Valley, Southeast, and

mid-Atlantic with over 40%—to as high as 82%—of their

storm reports due to QLCSs (Fig. 9). The QLCS-

attributable proportion drops to a minimum for the

domain during the warm season, with less than 15% of

reports due to QLCS in July, August, and September;

this relatively low proportion is due to the prevalence of

unorganized convection during this period for large

expanses of the domain (Miller and Mote 2017). How-

ever, QLCS hazards constitute well over 30% of all

storm reports in many areas of the Midwest and Corn

Belt during the warm season.

Nearly 85% of QLCSs produce at least one severe

thunderstorm report, with over 50% (10%) of events

producing 10 (100) reports or more (Fig. 10). There have

been five events that have yielded over 600 reports in-

cluding 4–5 April 2011 (1163 reports), 29–30 June 2012

(788), 6–7March 2017 (684), 19–20April 2011 (658), and

1 March 2017 (627).

b. QLCS tornado occurrence

Roughly 21% of reported tornadoes are attributable

to QLCSs during the 22-yr study period (Fig. 11a). In a

3-yr investigation from 1998 to 2000, Trapp et al. (2005)
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found that 18% of tornadoes were produced by QLCSs.

Our proportion of QLCS tornadoes (17.3%) is equiva-

lent to Trapp et al.’s finding during the overlapping three

years, adding confidence to the automated methods

embraced in this research. There is also a notable in-

crease in the proportion of QLCS tornadoes since 2008,

with proportional peaks in 2011, 2013, and 2017 at

34.6%, 35.0%, and 38.9%, respectively. Although there

is some uncertainly related to nonmeteorological fac-

tors, including those in reporting, we postulate that the

larger proportion of QLCS tornadoes found in the latter

third of the record (;29.1% from 2011 to 2017) is more

climatologically representative due to better under-

standing and documentation; however, additional years

of data will be required to confirm this hypothesis. Di-

rect comparison of our output with Smith et al.’s (2012)

relative storm report attribution frequency is diffi-

cult due to differing methodologies and periods of

analysis. That said, their relative frequency of QLCS

tornadoes is near 14%, whereas their more encom-

passing ‘‘linear’’ morphology, which includes QLCSs,

right-moving supercell in line, and line marginal

modes, is responsible for over 25% of their relative

counts. These values are comparable with our pro-

portions, despite different methodologies and study pe-

riods. It should be noted that the necessity of including the

numbers from ‘‘right-moving supercell in line’’ to pro-

duce comparable proportions affirm Smith et al.’s (2012)

findings that linear modes identified only by patterns

in radar reflectivity might belie the true nature of

embedded updrafts. Although one should hesitate to

discount a supercellular origin for the reports iden-

tified as QLCS events in this work, the overarching

theme of complex, widespread, and linearly organized

convection associated (at least spatially) with significant

and even violent tornadoes remains consistent with

findings in the literature.

Initially, the proportion of QLCS-attributable torna-

does increases as the EF scale increases, jumping from

21%of all tornadoes, to 29% of EF11 and 26% of EF21
(Table 2). As espoused by Trapp et al. (2005), a non-

negligible proportion of weak QLCS tornadoes may go

unreported, though we postulate, as suggested above,

that advances in the WSR-88D network and postevent

assessments have reduced this undocumented proportion

during the period. The QLCS proportion decreases as

prescribed damage intensity moves into intense (EF31)

and violent (EF41) events, with those EF-scale thresh-

olds accounting for 20% and 15%, respectively. There

have been no documented EF5s associated with QLCSs.

Though difficult to compare directly our results with

Smith et al. (2012), our proportions are generally within

the range of percentages Smith et al. produced for

QLCSs and their more encompassing ‘‘linear’’ mor-

phology, especially for EF01 through EF21 events.

We do differ, and have higher QLCS contributions,

for EF31 and EF41.

The initially perceived unique proportional contribu-

tions from QLCSs found for strong tornadoes prompted

additional testing. As we discuss at the conclusion of

section 2, the image segmentation, bridging, and 20-km

buffering methodology may permit, in some cases, false

capturing of isolated, mesocyclone-induced tornadoes

due to supercells and ascribing those events as QLCSs.

To test, we manually classified over 3100 algorithm-

identified QLCS tornadoes from 2007 to 2017, placing

TABLE 1. The number of monthly and total severe thunderstorm reports by hazard, as well as the proportion of those reports attrib-

utable to QLCSs for the 22-yr period as delineated using the spatiotemporal methods outlined in section 2c. Reports are those from

SVRGISwithin the analysis domain (cf. interior rectangle in Fig. 8 panels) and where radar data were available at time of report. Boldface

cells denote highest value for each attribute.

All severe reports Tornado Severe wind Severe hail

Month Reports

QLCS

reports

QLCS

% Reports

QLCS

reports

QLCS

% Reports

QLCS

reports

QLCS

% Reports

QLCS

reports

QLCS

%

Jan 8091 3335 41% 801 358 45% 4935 2322 47% 2355 655 28%

Feb 11 362 5032 44% 754 311 41% 6411 3725 58% 4197 973 23%

Mar 31 818 8414 26% 1726 493 29% 10 704 4931 46% 19 388 2877 15%

Apr 65 454 14 947 23% 3861 1046 27% 21 510 8652 40% 40 083 4980 12%

May 10 4349 20 787 20% 5739 1130 20% 39 230 13 228 34% 59 380 5959 10%

Jun 123 364 24 035 19% 4172 638 15% 65 902 18 470 28% 53 290 4418 8%

Jul 93 887 13 110 14% 2131 236 11% 61 757 11 304 18% 29 999 1340 4%

Aug 58 619 5827 10% 1440 113 8% 36 166 4733 13% 21 013 891 4%

Sep 23 116 3471 15% 1338 65 5% 12 388 2648 21% 9390 686 7%

Oct 13 371 3452 26% 1198 232 19% 7089 2614 37% 5084 553 11%

Nov 9371 3799 41% 1166 344 30% 5958 2813 47% 2247 589 26%

Dec 5407 1895 35% 612 188 31% 3412 1399 41% 1383 299 22%

Total 548 209 108 104 20% 24 938 5154 21% 275 462 76 839 28% 247 809 24 220 10%
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each event in one of three classes: QLCS, non-QLCS, or

‘‘undetermined’’. The non-QLCS events, or false cap-

tures, were typically affiliated with isolated supercell-

like structures that were visibly disconnected from the

algorithm-identified QLCS, but were within the buffer

region and, in some cases, likely to be swept up by the

QLCS in time or, in other cases, were detached tail-end

Charlie type events. These events tended to occur on

high-end days where both supercell and QLCS struc-

tures occurred in the same environmental ingredients

space. With the ‘‘undetermined’’ classification, we strug-

gled in deciding due to stratiform or convective bridging

that can occur in and around systems. Overall, the test

revealed an algorithm accuracy ranged from 89.1% to

95.4% for EF01 events. Specifically, the 95.4% is inclusive

of those labeled QLCS and ‘‘undetermined’’, whereas

the 89.1% is based solely on QLCS-labeled events, with

non-QLCS and ‘‘undetermined’’ cases attributable

to a 10.9% overcounting error. This error increases as

the EF scale increases. The algorithm had an accu-

racy range of 83.1%–92.9% for EF21, and 68.2%–

87.1% for EF31. These results show that the automated

approach creates a reasonably accurate estimate of

QLCS-affiliated tornado reports, but struggles with

relatively rare, strong tornadoes that exist in the same

environmental space as a QLCS.

FIG. 8. The percent of (a) all severe thunderstorm hazards, (b) tornadoes, (c) nontornadic severe wind, and (d) severe hail reported in an

80 km3 80 km grid cell due to QLCS structures. Only cells with$10 reports or in the study domain are filled. Severe hazard attribution

study area denoted by interior rectangle in panels.
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Seasonally, QLCS tornadoes are most frequent in

April, May, and June, yet the proportion of tornadoes

due to QLCSs is highest fromNovember throughMarch

(Fig. 11b). During the period of record, the proportion

of QLCS tornadoes has been increasing in all seasons

over time. The most demonstrable growth was during

the winter (December–February), from 31.6% for 1997–

2003, to 35.2% for 2004–10, to 49% for 2011–17. The

spring season (March–May) also witnessed large pro-

portional increases, from 16.2% in the 1997–2003 period

to over 33% in the latter 7 years. Interestingly, there

were, on average, 6770 non-QLCS tornadoes during

each of the two earlier 7-yr periods, which dropped to

just over 5300 during the last 7-yr period; conversely,

there were 1263 and 1542 QLCS tornadoes during the

first two 7-yr periods, respectively, which increased to

2186QLCS tornadoes in the last period. This divergence

in QLCS and non-QLCS tornado counts may be illus-

trative of an increasingly better understanding of the

QLCS and the hazards they produce, as well as their

detection and postevent assessments that accompanied

many of these events in the latter period.

Spatially, the proportion of tornadoes due to QLCSs

is clustered west of the Appalachians, stretching from the

lower Great Lakes to the mid-South (Fig. 8b). Many grid

cells in this region have over 50%—to as high as 73%—

of their reported tornadoes due to the QLCS morphol-

ogy. Kentucky and Indiana had the most QLCS-affiliated

FIG. 9. The percent of all severe thunderstorm hazards reported in an 80 km3 80 km grid cell due toQLCS structures for (a) winter (DJF),

(b) spring (MAM), (c) summer (JJA), and (d) fall (SON). Only cells with $10 reports or in study domain are filled.
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FIG. 10. Probability of exceedance curves for all severe thunderstorm reports (black; solid), tornadoes (red;

dashes), severe wind (blue; dash–dots), and severe hail (green; dots) for (a) annual, (b) winter (DJF), (c) spring

(MAM), (d) summer (JJA), and (e) fall (SON).
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tornadoes with 43% and 40% of events due to this

morphology, respectively. Over 35% of tornadoes in

Alabama, Georgia, Mississippi, and Tennessee, and

over 30% of events in Arkansas, Ohio, and Illinois are

due to QLCSs. Most tornadoes are produced by QLCSs

in many areas of the mid-South and central and lower

Mississippi and Ohio River Valleys during the winter and

spring season (Fig. 12). This region is characterized by

relatively lowwarning performance (Anderson-Frey et al.

2016), which may be, at least in part, due to the pre-

dominance of QLCS tornadic environments, often fea-

turing high-shear, low-CAPE ingredients (Thompson

et al. 2012, 2013; Anderson-Frey et al. 2016) and, gen-

erally, shallower and weaker tornadic circulations that

are difficult to detect (Trapp and Weisman 2003; Davis

and Parker 2014). Despite relatively high counts of

QLCSs, the central Great Plains has a comparatively

low proportion of QLCS-affiliated tornadoes, which is

due to the prevalence of supercell tornadoes in this

region (cf. Thompson et al. 2013, their Fig. 1a).

The most dramatic temporal signal in the tornado

analysis is the comparatively higher nocturnal tendency

for QLCS events versus non-QLCS events (Fig. 11c),

which affirms an earlier result from Trapp et al. (2005).

Nocturnal tornadoes, especially significant events, can

have substantial societal impact (Ashley et al. 2008),

are difficult to forecast and warn (Brotzge et al. 2013;

Anderson-Frey et al. 2016), and often appear to occur in

environments with ingredients not typically considered

favorable for significant tornadogenesis (Kis and Straka

2010). Though tornado counts with both QLCSs and

non-QLCSs reach a minimum during the overnight, the

proportion that are due toQLCSs rapidly increases from

less than 15% during the afternoon/evening hours to

FIG. 11. (a) Annual, (b) monthly, and (c) hourly counts (left axes) and percent (right axes) of tornadoes produced byQLCSs. (d)–(f) As in

(a)–(c), but for severe wind, and (g)–(j), as in (a)–(c), but for severe hail.
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over 50%by 0600UTC. This majority QLCS proportion

is higher than that uncovered in the 3-yr Trapp et al.

(2005) study, and does not decline notably until mid- to

late morning. The population of QLCSs is climatologi-

cally higher at night (Figs. 7a,b), which explains, at least

in part, why the proportion of QLCS tornadoes has

a nocturnal maximum. Anderson-Frey et al. (2016)

also found a disproportionally high ratio of nocturnal

tornadoes due to QLCSs in their analysis of the Smith

et al. (2012) filtered dataset; however, their 24% pro-

portion of nocturnal (from 2h after sunset to sunrise)

tornadoes is less than proportions found throughout

most of the nocturnal hours in our analysis. We did not

control for the variation in sunset/sunrise in our analysis,

but from 0000 to 1200 UTC (0300–1200 UTC), the

proportion of tornadoes due to QLCSs was 28% (45%).

The 22-yr analysis has a sawtooth character to the

annual proportion of significant (F/EF21) tornadoes

due to QLCSs (Fig. 13a); the variability across the pe-

riod is expected considering the relatively small sample

size for these higher-end events. Overall, 25.6% of sig-

nificant tornadoes were due to QLCSs, with a notable

increase in annual significant QLCS tornado counts

and proportions during the latter period of record. The

proportion of significant tornadoes due to QLCSs is

highest from November to February, with these months

exhibiting greater than 30%—and, in some cases—40%

of significant tornadoes due to QLCSs (Fig. 13b).

In a 3-yr assessment of significant nocturnal torna-

does, Kis and Straka (2010) found that 88%of the events

in their sample were due to QLCSs. Conversely, in their

9-yr analysis, Smith et al. (2012) found that less than

14%of significant nocturnal tornadoeswere due toQLCSs.

This discrepancy could be due to the differences in criteria

used to delineate QLCSs—for example, Smith et al.

(2012) used a filtering method to sample events, and Kis

and Straka (2010) did not include contiguous reflectivity

as a part of their QLCS delineation, suggesting that

noncontiguous lines of supercells may have been in-

cluded in their sample. Our methodology suggests that

the proportion of significant tornadoes due to QLCSs

ranges from 50% to nearly 70% for the hourly period

stretching from 0600 to 1300 UTC (Fig. 13c). Again, we

did not control for the variation in sunset/sunrise in our

analysis, but from 0000 to 1200 UTC (0300–1200 UTC),

the proportion of significant tornadoes due to QLCSs

was 32% (50%).

Nearly 33% of QLCSs produce at least one tornado re-

port, with around 10% generating five or more tornadoes

(Fig. 10). Over 40% of winter and spring QLCSs pro-

duce tornadoes, while summer and fall events gener-

ate a tornado at nearly half that rate. Summer QLCSs

rarely produce large numbers of tornadoes with the 99th

percentile QLCS exceeding 10 tornadoes. Illustrating

the QLCS’s propensity for tornadoes during the cool

and transition seasons, only one of the top-20 QLCSs

by tornado count occurs outside of a period from late

October through early May, with April the dominant

mode in the top-20 list (9 of 20).

c. QLCS severe wind occurrence

Over 28% of severe wind reports were produced by

QLCSs over the study period (Table 1). The QLCS-

attributable proportion ranges from 36% of all wind

reports in 1998 and 2017 to less than 22% in 2007 (Fig. 11d).

There has been a notable inflation in wind reports over

the period of record; the 7-yr period from 1997 to 2003

had a mean of roughly 10 500 wind reports per year,

which increased almost 38%, or to about 14 600 per year,

from 2011 to 2017. Correspondingly, the number of wind

reports affiliated with QLCSs increased over the period

at the same rate, with the proportion of severe wind

reports due to QLCSs remaining relatively stagnant—in

the high 20s—between periods. Both QLCS and non-

QLCS significant [$65kt (1 kt ’ 0.51ms21)] wind re-

ports have trended upward during the period of record

(Fig. 13d), increasing from an annual mean of under 700

reports from 1997 to 2003, to nearly 980 total reports, on

average, from 2011 to 2017. These reporting trends are

largely due to various biases and nonmeteorological

secularities, and have been consistently trending upward

for decades (Schaefer and Edwards 1999; Weiss et al.

2002; Doswell et al. 2005; Trapp et al. 2006; Smith et al.

2013; Edwards et al. 2018). Proportionally, 34% of all

significant wind reports are due to QLCSs (Table 2),

with that proportion slowly increasing to 40%, on av-

erage, for the latter third of the record.

TABLE 2. The number of tornado, severe and significant wind,

and severe and significant hail reports for the 22-yr period, as well

as the number and proportion of those reports attributable to

QLCSs as delineated using the spatiotemporal methods outlined in

section 2c. QLCS tornado counts and proportions are provided by

increasing EF-scale damage magnitude. Reports are those from

SVRGIS within the analysis domain (cf. interior rectangle in Fig. 8

panels) and where radar data were available at time of report.

Hazard Study domain QLCS % QLCS

EF01 tornado 24 938 5154 21%

EF11 tornado 10 108 2899 29%

EF21 tornado 2798 716 26%

EF31 tornado 739 147 20%

EF4 1 tornado 142 22 15%

EF5 tornado 14 0 0%

Severe wind 275 462 76 839 28%

Significant wind 18 484 6360 34%

Severe hail 247 809 24 220 10%

Significant hail 12 994 852 7%
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The proportion of wind reports due to QLCS is

highest in the Midwest (Fig. 8c), with over 40% of the

wind reports inArkansas, Illinois, Indiana, and Iowa due

to QLCSs. A broad region including the eastern and

southern Great Plains, Midwest, Ohio River Valley, and

mid-South has from 30% and 50% of all wind reports

due to QLCSs. Comparatively, proportional minima are

found in the High Plains and along and east of the Ap-

palachians. Wind report counts due to QLCSs maximize

in May, June, and July; conversely, the proportional

QLCS windmaxima occur in November (47%), January

(47%), and February (58%) (Fig. 11e). Proportional

QLCS wind minima occur in the latter warm-season,

when unorganized convection is ubiquitous due to the

prevalence of modest instability and low-shear envi-

ronments (Miller and Mote 2017). Well over 50%, to

as high as 85%, of wind reports are due to QLCSs

throughout most of the Southeast in the winter (Fig. 14).

An even larger expanse of the central United States has

over 50% of wind reports due to QLCSs during the

spring, with proportional maxima constrained to the

Midwest in the summer, and Midwest and Ohio River

Valley in the fall. Significant severe wind reports due

to QLCSs are most frequent in April–July (Fig. 13b);

however, proportionally, QLCS-attributable winds

prevail during the winter and spring with a majority of

significant wind reports during February, March, and

November due to QLCSs.

FIG. 12. As in Fig. 9, but for tornadoes.
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Like tornadoes, the severe and significant severe wind

report counts are highest (lowest) for QLCS and non-

QLCS events during the midafternoon through evening

(overnight and morning) hours (Figs. 11f and 13f). The

percent of wind reports due to QLCSs is inverse to the

overall counts, increasing rapidly in proportion between

0400 and 0600 UTC and remaining above 40% through

1400 UTC. There are nearly as many, or more, QLCS

severe (significant) wind reports than non-QLCS wind

reports from 0500 to 1100 UTC (0600–1400 UTC), il-

lustrating the importance of this organized morphology

during the late-night and early morning when successful

warning dissemination and implementation can be cur-

tailed and societal impacts are high (Ashley et al. 2008;

Simmons and Sutter 2009; Brotzge and Erickson 2010;

Black and Ashley 2010, 2011; Mason et al. 2018).

Over 79% of QLCS produce at least one severe and/or

damaging wind report, and over 30% of events produce

at least 20 wind reports (Fig. 10). This is the dominant

severe hazard mode across all seasons for a majority

of QLCSs.

d. QLCS severe hail occurrence

Only 10% of severe hail reports are due to QLCSs,

with an attribution low of 5.6% in 2015 and a high of

14.3% in 2017 (Fig. 11g). There were over 3 times more

QLCS severe wind reports than severe hail reports over

the period; this ratio was also found by Klimowski et al.

(2003) in their appraisal of severe reports from linear

storm complexes over the northern High Plains. The

notable inflation of counts in QLCS tornado and severe

wind reports over the study record was not found with

severe hail. Proportionally, the dramatic seasonal and

diurnal cycles established in the QLCS-attributable

tornado and wind data are far more muted in the se-

vere hail data. The proportion of severe hail reports due

FIG. 13. As in Fig. 11, but for significant events, which include $F/EF2 tornadoes, hail $ 50mm (2 in.), and nontornadic wind $ 65 kt.
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to QLCSs is maximized (;25%) during the winter when

the overall number of severe hail reports is at a mini-

mum (Fig. 15).While severeQLCS hail reports are most

frequent in the spring and early summer, they only

constitute roughly 10% of reports during this seasonal

period (Fig. 11h), which suggests the supercell and other

organized morphologies are the dominant severe hail

producers during this season (cf. Fig. 18 in Smith et al.

2012). Spatially, the proportion of QLCS severe hail

reports are generally like severe wind, but overall

dampened and more varied across regional maxima due

to relatively small sample sizes in bins (Figs. 8d and 15).

There were only 852 significant ($2 in.) hail reports due

to QLCSs during the 22-yr period, which is only 7% of

all significant reports (Table 2). There are relatively few

temporal trends, if any, in the QLCS-attributable sig-

nificant hail data, which is affected by small sample size

issues (Figs. 13g–i).

5. Conclusions

This research employed a QLCS-detection and

tracking algorithm on more than two decades of radar

imagery to generate the first, long-term, systematic cli-

matology of QLCSs and their affiliated hazards across

the United States. We used theMCS-detection algorithm

developed initially in Haberlie and Ashley (2018a,b),

in combination with image classification and machine

FIG. 14. As in Fig. 9, but for severe winds.
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learning approaches, to advance an efficient method for

detecting QLCS slices, swaths, and severe hazard re-

ports. Expert-identified QLCSs in sample MCS-slice

data informed the machine learning algorithm, which,

when combined with strict, objectively applied spatio-

temporal thresholds in reflectivity imagery, promoted a

robust algorithm that had high accuracy in a data aug-

mentation test. An automated method was desired be-

cause of the considerable number of MCS slices (265953),

QLCS slices (124984), and QLCS swaths (.3000) de-

tected using nearly 800000 CONUS-scale radar reflectiv-

ity images at roughly 2-km, 15-min resolution. In addition,

nearly 550000 severe thunderstorm reports were consid-

ered in an attribution schemeused to assign reports to their

parent QLCS. This approach permitted an extensive

assessment of the spatiotemporal climatology of QLCSs

in theUnited States, as well as an appraisal of the amount

and proportion of reported severe storm hazards due to

these large, organized structures.

Results revealed that QLCSs are most frequent across

the central United States, in a region stretching from the

Midwest equatorward to the central Gulf Coast, and

from the Interstate-35 corridor eastward to the central

Ohio River Valley. Areas within this broad maximum

experience, on average, 12–16 events annually, though

there was notable annual variability in counts driven by

late spring and early summer event populations. Over-

all, QLCSs were responsible for over 21% of reported

FIG. 15. As in Fig. 9, but for severe hail.
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tornadoes, 28% of severe winds, and 10% severe hail

across the central and eastern United States. QLCS-

attributed hazard report counts and proportions were

spatiotemporally diverse. QLCS tornado and severe

wind reports were most frequent in the spring and early

summer, and, diurnally, during the late afternoon and

early evening hours. However, the proportion of tor-

nado and severe wind reports had notable cool season

and nocturnal peaks, revealing that this morphology

dominates temporally when warning efficacy is dimin-

ished (Simmons and Sutter 2009; Brotzge and Erickson

2010; Mason et al. 2018). Roughly 29%–38% of MCSs

are QLCSs annually, which suggests that QLCS pop-

ulations and their variability have important implica-

tions for the U.S. hydroclimate, as well (Haberlie and

Ashley 2019).

These results build on earlier work that has examined

these storms in a subjective framework, assessing rela-

tively short temporal periods and/or small spatial do-

mains (e.g., Parker and Johnson 2000; Burke and Schultz

2004; Trapp et al. 2005; Gallus et al. 2008; Duda and

Gallus 2010) and/or using significant severe report fil-

tering methods (e.g., Smith et al. 2012, 2013; Anderson-

Frey et al. 2016). The approach advanced here reduces

the need for time-consuming expert classifications using

vast amounts of data, and, instead, promotes uniform

capturing of events that reduces biases that may enter

assessments using subjective classification schemes.While

the storm report attribution method employed herein is

not faultless, we find the algorithm accuracy encouraging.

Human observers have the advantage of fuzzy mental

segmentation, buffer ranges, and other ad hoc decisions.

The universal heuristics applied in this study represent a

predictable and repeatable balance between capturing

legitimate storm reports ahead of the line (e.g., outflow-

induced severe wind) and overcounting some events (e.g.,

EF31 tornadoes). We show that much of the results are

in-line with previous work, which is a notable incremental

development of the application of image classification and

machine learning in meteorological and hazards research.

Future work will continue to improve the detection/

tracking and storm-attribution algorithms by incorporating

additional data such as rotation tracks; enhancingmethods

that manage challenging segmentation, bridging, and

buffer-related issues, especially in mixed-mode cases

(e.g., merging supercell into QLCS); and incorporating

additional expert judgements.

As new radar data and storm reports are accumulated,

this research framework permits straightforward ex-

pansion of the climatology. Further, the method could

be used in an operational setting to support efficient de-

tection of events in simulated reflectivity output, as well

as promote verification of forecasts (e.g., Pinto et al. 2015;

Ahijevych et al. 2016). Finally, we plan to use the

methods and baseline climatology presented to assess

and compare how these events and their hazards may

evolve in the future. Using high-resolution, downscaled

climate simulation output, we intend to assess how

QLCS populations may change or shift in a warming

climate, though the accurate simulation of MCS mor-

phologies and their features in models remains an issue

(e.g., Lawson and Gallus 2016; Grunzke and Evans

2017), especially for QLCSs (Haberlie and Ashley

2018c). Through simulation improvements, ensemble

approaches, and increasing computer processing power,

we can uncover the future climatology of these and

similar convective events, generating information that

will assist in preparation and mitigation of organized

convection and its hazards in a setting featuring both

significant environmental and societal changes (Tippett

et al. 2015; Strader et al. 2017a,b).
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