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ABSTRACT

Research has illustrated that tornado disaster potential and impact severity are controlled by hazard risk

and underlying physical and social vulnerabilities. Previous vulnerability studies have suggested that an

important driver of disaster consequence is the type of housing affected by tornadic winds. This study

employs a Monte Carlo tornado simulation tool; mobile home location information derived from finescale,

land-parcel data; and census enumerations of socioeconomic vulnerability factors to assess the tornado

impact probability for one of the most wind hazard–susceptible demographics in the United States: mobile

home residents. Comparative analyses between Alabama and Kansas are employed to highlight regional

(i.e., Southeast vs Great Plains) differences in mobile home tornado risk, exposure, and vulnerability.

Tornado impact potential on mobile homes is 4.5 times (350%) greater in Alabama than in Kansas because

Alabama, in comparison to Kansas, is represented by 1) a greater number of mobile homes and 2) a more

sprawlingmobile home distribution. Findings reveal that the Southeast’smobile home residents are one of the

most socioeconomically and demographically marginalized populations in the United States and are more

susceptible to tornado impact and death than illustrated in prior research. Policy makers, engineers, and

members of integrated warning teams (i.e., National Weather Service, media, emergency managers, and first

responders) should use these findings to initiate a dialogue and construct interdisciplinary actions aimed at

improving societal and individual resilience before, during, and after hazardous weather events.

1. Introduction and background

On 21–22 January 2017, a Southeast U.S. tornado

outbreak produced over 80 tornadoes, $1.1 billion in

direct losses, and 20 fatalities (NOAA/NCEI 2018).

Nearly all the deaths in this event occurred in mobile, or

manufactured, housing (MH).1 The relationship be-

tween tornado fatalities and MH stock in the Southeast

is a common theme established in prior research as-

sessing tornado mortality (e.g., Brooks and Doswell

2002; Ashley 2007; Schmidlin et al. 2009; Chaney and

Weaver 2010; Sutter and Simmons 2010; Ash 2017).

Many studies have focused on either tornado risk2

(Brooks et al. 2003; Dixon et al. 2011; Brooks et al. 2014)

or societal vulnerability (Cutter et al. 2003; Ashley 2007;

Chaney and Weaver 2010; Sutter and Simmons 2010;

Emrich and Cutter 2011; Dixon and Moore 2012; Ash

2017) elements within the context of tornado disasters

and associated fatalities. Much of this research has in-

dicated that while hazard risk is vital in creating the

potential for tornado disaster, the consequences or

Corresponding author: Stephen M. Strader, stephen.strader@

villanova.edu

1Although there are slight differences between mobile and

manufactured homes, we follow Sutter and Simmons (2010) in

using themore prevalentmobile home term for either those factory

built and/or capable of being moved (single or double wide).

2 In this research, tornado risk is defined as the probability of a

tornado of a specific EFmagnitude occurring in space and time.We

follow Morss et al. (2011), where vulnerability is the susceptibility

of people or a system to damage or harm and contains elements of

exposure (people, assets, or characteristics of the natural and/or

built environment that position a system to be affected by a haz-

ard), sensitivity (degree to which a system is affected by hazard

conditions), and adaptive capacity (ability for the system to cope or

adapt to hazard conditions).

OCTOBER 2018 S TRADER AND ASHLEY 797

DOI: 10.1175/WCAS-D-18-0060.1

� 2018 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

mailto:stephen.strader@villanova.edu
mailto:stephen.strader@villanova.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


severity of tornado impacts on populations are con-

trolled largely by the underlying physical and societal

vulnerabilities. To date, there has been little research on

how tornado risk and MH resident vulnerability act to-

gether at fine spatial scale to create tornado disaster

potential in the Southeast.

Research investigating tornado risk has examined

spatiotemporal aspects of tornado occurrence (e.g.,

Brooks et al. 2003; Dixon et al. 2011; Brooks et al. 2014;

Ashley and Strader 2016) and/or the interaction of tor-

nadoes with society (e.g., Wurman et al. 2007; Ashley

et al. 2014). Studies have also explored mortality trends

and found that although tornadoes are most common in

the central Great Plains, fatal tornado frequency and

mortality rates are much higher in the Southeast

(Brooks and Doswell 2002; Ashley 2007; Simmons and

Sutter 2011; Ashley and Strader 2016). While the

Southeast’s elevated tornado death rates have been at-

tributed to many factors (e.g., more frequent nighttime

tornadoes and forest cover), a primary contributor to

elevated mortality in the Southeast is thought to be the

high percentage of MH stock (Ashley 2007). MHs are

the circumstance of death for a near majority of all

tornado-related fatalities in the region (Brooks and

Doswell 2002; Ashley 2007; Sutter and Simmons

2010). The likelihood of a tornado fatality in an MH is

15–20 times greater than in permanent homes (PH;

Brooks and Doswell 2002; Sutter and Simmons 2010).

Prior research has also suggested that MHs in the

Southeast are not distributed across the landscape

evenly and are found most frequently in rural areas

(Cutter et al. 2003; Schmidlin et al. 2009; Emrich and

Cutter 2011). This more spatially dispersed develop-

ment character may lead to increased odds of tornado

impact (Strader et al. 2018) and enhanced vulnerability

due to lack of resource access, limited social and po-

litical networks, and density of infrastructure that

provide lifelines during emergency situations (Cutter

et al. 2003).

Studies have also examined both physical and social

vulnerability components for MH residents and tornado

hazards (e.g., Merrell et al. 2002; Ashley 2007; Simmons

and Sutter 2007, 2008; Schmidlin et al. 2009; Sutter and

Simmons 2010; Ash 2017). Physical vulnerability factors

associated with MHs often refer to the age of the struc-

ture, construction quality, and lack of proper storm-

sheltering options (Simmons and Sutter 2008; Schmidlin

et al. 2009). Social vulnerability is regularly directed at

economic and demographic characteristics (e.g., poverty,

gender, race, age, and education) of a population (Cutter

et al. 2003; Emrich andCutter 2011).Ultimately, research

assessing tornado risk and vulnerability for MH pop-

ulations has often concentrated efforts at large spatial

scales, such as county or state levels (e.g., Boruff et al.

2003; Sutter and Simmons 2010). A small number of

studies have examined subcounty-level tornado MH

vulnerability, but only for small areas (e.g., Schmidlin

et al. 2009; Chaney andWeaver 2010; Ash 2017). As such,

there has been no research to date that has attempted to

connect tornado vulnerability to the household scale for a

large region, especially one plagued by high tornado ca-

sualty rates. Because most studies have used county-level

enumerations ofMH counts and vulnerability factors, the

overall understanding of how social and physical vulner-

abilities, as well as capacities, manifest at the MH-unit

scale during tornado hazard situations has been con-

strained. Our study, including a rich resource of high-

resolution quantitative geospatial data, confronts the

limited understanding of the MH tornado problem in the

Southeast.

The primary objective of this study is to examine MH

vulnerability and tornado risk at a fine spatial scale for

the Southeast and central Plains. We investigate how

the spatial character of MHs and resident vulnerability

varies across geographic space and shapes disaster con-

sequences. This study moves beyond understanding how

MH counts and vulnerability constituents at the county

scale influence tornado disaster potential by examining

vulnerability at the census block group and land-parcel,

or individual property, levels. This finescale assessment

provides amore precise appraisal ofMH tornado risk and

vulnerability with the goal of promoting a deeper un-

derstanding of how MH vulnerability and tornado risk

interact to create disaster.

2. Methods

The analyses conducted in this study focus on the

states of Kansas and Alabama. These two states were

selected because they are representative of distinct

tornado risk and vulnerability regions in the United

States. Alabama is in the heart of the Southeast, where

tornado [category 1 and higher on the enhanced Fujita

scale (EF11)] occurrence is high and tornado mortality

rates are greater than any other location in the United

States (Brooks and Doswell 2002; Ashley 2007; Ashley

et al. 2008; Simmons and Sutter 2011; Ashley and

Strader 2016). Kansas was selected for comparison to

Alabama because it is situated in a region of the United

States that also experiences many tornadoes annually, in

what has been colloquially termed ‘‘Tornado Alley’’

(Brooks et al. 2003; Ashley 2007; Gagan et al. 2010;

Dixon et al. 2011; Dixon and Mercer 2012; Ashley and

Strader 2016). However, Kansas has a relatively lower

tornado mortality rate, compared to Alabama (Ashley

2007; Ashley and Strader 2016). Because both states
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have similar tornado risk (Ashley and Strader 2016), the

disparity between Alabama and Kansas tornado mor-

tality may be attributed to the differences between the

central Plains’ and Southeast’s underlying land-use

patterns, socioeconomic and demographic3 vulnerabil-

ities, and built-environment characteristics (Ashley

2007; Simmons and Sutter 2011; Ashley and Strader

2016; Strader et al. 2016).

We first update and support prior work by examining

U.S. tornado risk and mortality using spatial and sta-

tistical techniques. An emphasis is placed on fatal tor-

nado occurrence, circumstance, and location (i.e., MH

or PH and latitude–longitude). Thereafter, the finescale

MH location data derived from land-parcel data are

employed to determine the current spatial patterns of

MH counts and associated variability across Alabama

and Kansas. Although the acquired raw character land-

parcel data captured most MH locations for Kansas and

Alabama, manyMH records were absent from the land-

parcel dataset. To account for missing MHs, aerial im-

agery from the Environmental Systems Research

Institute (ESRI) was used to digitize the missing MH

locations within the states. Specifically, 1-m or better

areal imagery used was derived from a variety of satel-

lite imagery sources, including the National Agriculture

Imagery Program (NAIP) and the ESRI Community

Maps Program. A ‘‘heads up’’ digitization method was

employed by zooming in on the aerial imagery and

subsequently employing Google’s Street View to con-

firm if a building was indeed an MH. Because MHs are

prefabricated, the typical size (i.e., 5.5m 3 27m for

single wide and 6.1m 3 27m) was also used to distin-

guish MHs from other buildings or structures. In gen-

eral, this manual data-gathering process ensured that a

complete-as-possible record of MH locations was gen-

erated for each state. This methodology assured that

given a 100-km2 region in Alabama or Kansas, MH

counts were within 12% of the actual number of MHs

in the regions. For example, if there were 100 actual

MHs in a 100-km2 region, the parcel and digitized

supplemental data-gathering process captured at least

88 MHs. This finescale spatial accuracy makes the MH

data employed in this study themost accurate and precise

collection ofMH locations for these states. Following the

MH data-gathering process, a geographic information

system (GIS) was used to calculate spatial statistics, such

as Ripley’s K function (RKF) analyses, on MHs in the

two states (Dixon 2002). RKF is a multidistance spatial

cluster analysis method that determines if there is clus-

tering or dispersion of geographic points and measures

the degree of clustering or dispersion over a range of

search distances.

The study also uses census block group enumerations

and land-use data in conjunctionwithGIS techniques, such

as zonal statistics, to determine the locational, socioeco-

nomic, and demographic settings of MHs within Kansas

and Alabama. We use the 2012–16 American Commu-

nity Survey (ACS) block group data enumerations such as

total population, race, gender, age, educational attain-

ment, household income, poverty relative to the poverty

level, and public assistance as measures of demographic

and socioeconomic vulnerability (Cutter et al. 2003, 2009;

Emrich and Cutter 2011). Using these socioeconomic and

demographicmeasures, we created the socioeconomic and

demographic vulnerability index (SEDVI). Specifically,

census block group enumerations of socioeconomic

and demographic data (i.e., race, sex, age, income, public

assistance, education, and household status) from the

2012–16 ACS were gathered for Alabama and Kansas

(Table 1). Block group totals of these socioeconomic and

demographic measurements were converted into a per-

centage of total population or householdswithin that block

group. For example, the sum number of female persons

within a block group was converted to the percentage of

the total population that is female. This process was re-

peated for all SEDVI variables. Each of these socioeco-

nomic and demographic variable percentage calculations

(Var) was then weighted equally and summed to provide a

census block group SEDVI score [Eq. (1)], or

SEDVI5 �
n

i51

Var
i
5Var

1

�
1

n

�
1 � � � 1Var

n

�
1

n

�
.

(1)

The SEDVI and associated vulnerability metrics were

then mapped and examined to better understand the

socioeconomic and demographic settings ofMHs. Land-

use and housing unit (HU) estimations from the Spa-

tially Explicit Regional Growth Model (SERGoM) are

also employed to determine whether MHs and all HUs

are situated in rural (.16.18 ha per home), exurban

(0.68–16.18ha per home), suburban (0.1–0.68ha per home),

and urban (,0.1ha per home) land-use classifications

(Theobald 2005).

We also investigate the physical exposure component

of MH vulnerability by using historical tornado paths

and land-parcel-level MH data within a Monte Carlo

modeling framework. The Tornado Impact Monte

Carlo (TorMC) model has been developed, tested, and

3 In this study, we define socioeconomic status as a measure of a

person’s combined economic and social standing (Baker 2014).

Factors such as education, income, and occupation are utilized to

determine the socioeconomic character of a population. We also

follow Morrill (1990), who uses metrics such as age and race to

describe the demographic character of a population.
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demonstrated in prior research (e.g., Strader et al. 2016,

2017a,b). Monte Carlo simulation is a modeling tech-

nique that uses repeated random sampling to obtain the

distribution of an unknown probabilistic entity (Mooney

1997). Monte Carlo methods have previously been used

to investigate risk and tornado climatology (Meyer et al.

2002), potential impacts on policy holders (Daneshvaran

and Morden 2007), and tornado disaster or impact

likelihood on the built environment (Strader et al. 2016,

2017a,b). Specific TorMC methods, components, and

modeling options are discussed in Strader et al. (2016).

For this study, 10 000 years of EF11 tornado foot-

prints (i.e., pathlength by path width; representative

maximum extent of tornadic winds in a tornado event)

were simulated across Alabama andKansas. A 10 000-yr

simulation length was selected because it produced

functional, yet computationally and temporally efficient,

output for both Alabama and Kansas. EF11 tornadoes

were simulated since they have been historically asso-

ciated with the greatest number of tornado fatalities,

and their annual counts have been relatively stable

throughout the period of record (Verbout et al. 2006;

Brooks et al. 2003; Ashley 2007; Doswell 2007; Simmons

and Sutter 2011; Agee and Childs 2014; Ashley and

Strader 2016). Simulated tornado pathlength, width,

azimuth, intensity, and frequency were determined by

historical tornado data trends using a bootstrap, random

selection with replacement method and an underlying

spatial weighting process derived from historical tor-

nado risk within Alabama and Kansas (Strader et al.

2016). Tornado impact magnitudes using the TorMC

were calculated using a spatial join technique with the

simulated tornado paths and the point MH locations.

Results from the TorMC simulations yield tornado–

MH impact likelihood and magnitude using descriptive

statistics and annual tornado–housing impact proba-

bility of exceedance (POE) curves. The MH impact

results were compared against HU enumerations. This

comparative analysis revealed the relative effects MH

housing stock have on tornado impact potential com-

pared to all housing stock. Ultimately, this portion of the

research provides a probabilistic expectation of tornado–

MH impact magnitude for each location scenario to il-

lustrate how both the magnitude and spatial distribution

of MHs in the Southeast uniquely influence tornado di-

saster potential.

3. Results and discussion

a. Tornado fatalities and housing relationship

From 1880 to 2017, there have been a total of 19907

tornado fatalities in the contiguous United States. The

Southeast states of Alabama, Georgia, Mississippi, and

Tennessee had 27% of all fatalities during this 137-yr pe-

riod, while the central Plains states of Kansas, Nebraska,

Oklahoma, and Texas had 21.4%. However, reporting the

TABLE 1. Socioeconomic and demographic variable descriptions and concepts used to create the SEDVI. Vulnerability metrics and

variables are based on prior hazards vulnerability work outlined by Cutter et al. (2003, 2009).

Factor

Variable (percentage of population

or households) Effect on vulnerability

Race Black Cultural barriers (Peacock et al. 1997; Cutter et al. 2006;

Elder et al. 2007)

Hispanic Cultural and language barriers (Peguero 2006;

Trujillo-Pagan 2007)

Sex Female Employment types; lower wages; family care responsibility

(Enarson et al. 2007)

Age Less than 5 years old Mobility; dependence on others (Phillips and Hewett 2005;

Smith et al. 2009)Less than 18 years old (minor)

More than 65 years old

Income In poverty in last 12 months Lower ability to absorb and losses; lower resilience; fewer

financial and social safety nets (Peacock et al. 1997;

Fothergill and Peek 2004; Masozera et al. 2007)

Unemployed or not in work force

in last 12 months

Public assistance With public assistance in last 12 months Unable to respond to hazards effectively due to already

being economically and socially disadvantaged (McGuire et al.

2007; Morrow 2008)

On food stamps in last 12 months

With disability in last 12 months

Education Less than high school education

(less than ninth grade)

Relationship to income and economic constraints;

understanding of warning and recovery information

(Mitchell et al. 2000)

Household Single female head of house Limited financial resources; economic, social, and family

responsibilities (Morrow 1999; Cutter et al. 2009)Household size greater than four people

Renters
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circumstance of tornado death (i.e., PH, MH, vehicle,

outside, etc.) did not become consistent until themid-1980s

(Ashley 2007). From 1985 to 2017, there were 2248

tornado-related fatalities, or 68 fatalities per year in the

United States for all circumstances. During the same 33-yr

period, there were 731 PH and 872 MH fatalities in the

contiguous United States. Together, PH- and MH-affiliated

fatalities made up 72% of all tornado fatalities since 1985,

with 39% of all fatalities occurring in MHs. Although

MHs represent around 6% of the entire U.S. housing

stock (Gryn 2016), 54% of all housing-related tornado

deaths from 1985 to 2017 occurred in MH structures.

Of the 15 grid cells that resulted in greater than

0.35 MH tornado fatalities per year from 1985 to 2017, 9

were in the Southeast states of Alabama, Georgia,

Mississippi, and Tennessee (Fig. 1). In this four-state re-

gion, there were a total of 867 tornado deaths, or a mean

of 26 fatalities per year from 1985 to 2017. For this same

period, 355 fatalities occurred in MHs in the region, or

41% of all deaths; if the 27 April 2011 outbreak is not

considered (which containedmany PHdeaths), then this

percentage would soar to 52%. Comparatively, the

central Plains states of Kansas, Nebraska, Oklahoma,

and Texas had 351 fatalities since 1985, or a mean of 10

fatalities per year. The central Plains states also had 109

MH fatalities, or approximately, on average, three MH

fatalities per year. These results illustrate the linkage

between tornado fatalities and housing type. Specifi-

cally, tornado fatalities tend to occur in the Southeast,

where MH exposure is high (Fig. 2). As discussed in

prior studies (e.g., Brooks and Doswell 2002; Ashley

2007), the MH prevalence in the Southeast continues to

influence vulnerability to tornadoes and increase the

odds of death and injury.

b. Patterns in mobile home location and density

To explore differences in the relationship among land

use, MHs, and tornadoes in the Southeast and central

Plains, Alabama and Kansas are used as exemplars of

each region. Alabama and Kansas represent distinct

combinations of tornado risk and land-use morphol-

ogies. Although both states largely comprise low-density

land use, rural land in Kansas is nearly 91% of the total

developable land area compared to 68% in Alabama

(Table 2). The primary difference between Alabama

and Kansas land use is in the exurban category. While

only 8.3% of Kansas is considered exurban, more than

30% of all Alabama development is exurban and rela-

tively higher-density rural land use. Kansas was divided

into eastern and western regions, since western Kansas

is represented by many smaller development centers, or

cities, compared to the eastern portion of the state.

Because eastern Kansas contains a higher frequency

of higher-density urban areas, such as Wichita and

FIG. 1. Tornado fatalities per year in an 80 km3 80 km grid for (a) 1880–2017, (b) 1985–2017, (c) PH circumstance

of death 1985–2017, and (d) MH circumstance of death 1985–2017.
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Kansas City, a greater amount of urban and suburban

land use exists in this region. Consequently, development

and urban sprawl (Duany et al. 2000; Gillham 2002) are

more evident in eastern Kansas compared to western por-

tion of the state. For similar reasons, Alabama was divided

into northern and southern regions of development.

Housing density and development in Alabama is concen-

trated north of the East Gulf Coastal Plain region (Fig. 3).

This region is also characterized by a high percentage of

suburban and exurban land use. Southern Alabama

comprises mostly rural land use, except for a high per-

centage of suburban and urban land use associated with

coastal development in Mobile and Baldwin Counties.

Research related to tornado disasters and housing density

revealed that urban sprawl increases tornado impact and

disaster potential, or the so-called expanding bull’s-eye

effect (Ashley et al. 2014; Strader and Ashley 2015).

However, these studies have not specifically examined

the contribution of MH stock to this effect.

MH counts and their distribution across geographies are

vastly different between Alabama and Kansas (Table 3,

Fig. 3).MHdensity inAlabama (1.52MHper km) ismuch

higher thanKansas (0.27MHper km).However, themean

number of MHs in each 2.5-km grid cell for Alabama and

Kansas is similar (Table 3). These comparable means can

be described, in part, by the variability and difference be-

tween Alabama and Kansas MH counts per grid cell.

These results suggest that although there are a greater

number of MHs in Alabama, MHs in Kansas tend to be in

close proximity to other MHs, such as in a community or

park. While MHs in Alabama are correspondingly found

near each other, they are also more frequently located in

lower-density exurban and rural areas. The absence of

MHs in exurban and rural locations in Kansas reveals the

importance of assessing not only MH counts, but also the

spatial distribution of MHs across the landscape.

RKF results for the entire states of Alabama and

Kansas reveal that MH locations in both states are

clustered (Fig. 4). In general, this finding was expected

because housing and development are clustered across

the geographic landscape (Kim 1999; Lang 2003; Greene

and Pick 2011; Whyte 2013). However, MH locations in

Kansas are 143% (mean) more clustered than in Ala-

bama. The greatest difference between Alabama and

Kansas MH clustering occurs with a search radius of less

than 2km, suggesting that MHs in Kansas are typically

found much closer to other MHs, compared to those

FIG. 2. (a) The percentage of total housing stock that is MH by

county 2016 (ACS 2017) and (b) the housing-related percentage of

all tornado fatalities from 1985 to 2017.

TABLE 2. MH counts, HU, percentage of MHs by land use, percentage of HU by land use, and percentage of developable state land

area by rural (,0.062 HU per ha), exurban (0.062–1.236 HU per ha), suburban (1.237–9.884 HU per ha), and urban (.9.884 HU per ha)

land-use classification.

MH count Percentage of total MH Total HU count Percentage of total HU Percentage of state land use

AL

Rural 40 422 20.4 156 305 6.9 68.1

Exurban 116 807 58.8 815 709 36.0 29.8

Suburban 36 473 18.4 789 996 34.8 1.9

Urban 4857 2.4 505 153 22.3 0.23

KS

Rural 6300 11.7 129 785 8.3 90.9

Exurban 12 293 22.7 276 990 17.7 8.3

Suburban 25 165 46.5 516 218 32.9 0.59

Urban 10 310 19.1 646 206 41.2 0.18
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MHs within Alabama. The inverse relationship occurs

above a search radius of 2 km, signifying that beyond

2km, MH locations in Kansas are increasingly more

dispersed. The more concentrated development pat-

terns and less sprawling land use in Kansas is due to the

presence of agricultural and livestock lands (Brown

et al. 2005; Kansas Department of Agriculture 2016).

This type of land use and zoning restricts development

associated with urban centers to sprawl across the

landscape. For example, the total percentage of land

area that is cropland, pasture, or rangeland in Kansas

is 88%, compared to 18% in Alabama (USDA 2017).

As such, because development and urban sprawl is much

more restricted in Kansas, MHs are far less likely to be

found in rural and exurban locations compared to

Alabama.

In Alabama, 58.8% of all MHs are in exurban land-

use density, followed by rural at 20.4% (Table 1). Con-

versely, the total number of Kansas MHs found in urban

areas is 207% greater than in Alabama, and 65.6% of

Kansas MHs are in suburban and urban densities. The

relationship between MH locations and land use follow

FIG. 3. Land-use classification for (a),(c) all housing and (b),(d) MH density on a 2.5 km 3 2.5 km grid for

(a),(b) KS and (c),(d) AL. Land use categorized as rural (,0.062 HU per ha), exurban (0.062–1.236 HU per ha),

suburban (1.237–9.884 HU per ha), and urban (.9.884 HU per ha).

TABLE 3. AL and KSMH statistics. Mean, standard deviation, coefficient of variation, andmaximumMH counts were determined within

a 2.5 km 3 2.5 km grid across each state.

State MH

count

State MH

density (km2)

MH count per grid

cell (mean)

MH count per grid

cell (std dev)

MH count per grid cell

(coefficient of variation)

MH count in grid cell

(maximum)

AL 202 705 1.52 9.46 25.0 2.6 1650

KS 57 298 0.27 9.27 42.3 4.6 1319
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similar patterns to HUs in each state (Fig. 3). Alabama

MHs are 22.8% more likely to be found in exurban re-

gions, compared to all housing types. Conversely, it is

more likely for Kansas MHs to exist within suburban

rather than rural areas. Kansas cities such as Garden

City, Dodge City, Colby, Hays, and Liberal exhibit MH

location patterns where MHs tend to occur on the pe-

riphery of the primary development core (Fig. 4f).

Overall, these results indicate that Alabama MHs are

more likely to be dispersed across the landscape and

found in less dense development compared to Kansas.

c. Alabama and Kansas socioeconomic and
demographic vulnerability

Alabama is more socioeconomically and demographi-

cally vulnerable to tornadoes than Kansas (Table 4).

The largest difference between Alabama and Kansas

vulnerability metrics is associated with a higher (17.5%)

percentage of total population that is black in Alabama

compared to Kansas. Additionally, the higher percent-

age of minority (black combined with Hispanic) pop-

ulation in Alabama leads to greater cultural barriers and

enhanced vulnerability in hazards situations (Peacock

et al. 1997; Cutter et al. 2006; Elder et al. 2007; Cutter

et al. 2009). Kansas has a slightly higher (10.9%) mean

block group percentage of children under 5 years old, a

larger minor population (12.1%), and a lower (1.2%)

percentage of persons over the age of 65, indicating that

the distribution of population by age in Alabama is

skewed toward older populations compared to Kansas.

For poverty, unemployment, public assistance, food stamps,

disability, single female head of household, and renter

FIG. 4. RKF analyses for (a) AL, (b) KS, (c) northern AL, (d) eastern KS, (e) southern AL, and (f) western KS.

ObservedK values above (below) the expected K values indicate clustering (dispersion) of MH at search distance

of 1–10 km.
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vulnerability metrics, the percentages of persons and

household are all greater in Alabama than in Kansas.

In general, the largest differences between socioeco-

nomic and demographic variables in Alabama and

Kansas are found in the race, income, and public assis-

tance categories. Mean and median SEDVI values for

Alabama are considerably higher thanKansas due to the

combined higher percentage of vulnerable populations.

This result supports prior hazard vulnerability research

that suggests enhanced vulnerability to hazards in the

Southeast (Dixon et al. 2011; Flanagan et al. 2011;

Cutter 2012). However, it is also important to un-

derstand where socioeconomically and demographically

vulnerable populations overlap within each state.

d. Intrastate socioeconomic and demographic
vulnerability patterns

In addition to the Alabama and Kansas statewide

differences in socioeconomic and demographic vulner-

ability factors, there are also unique spatial patterns of

vulnerability within Alabama and Kansas. In Alabama

(Fig. 5), high percentages of persons that are black,

unemployed, in poverty, on disability, on food stamps,

or single females that are the head of their household are

often collocated or found in similar regions. Alabama is

exemplar of a region with great racial divide across the

state that results in enhanced vulnerability to hazards

due to increased cultural differences and socioeconomic

marginalization (Emrich and Cutter 2011; Cutter 2012).

Elevated SEDVI values capture the higher percentages

of persons and households that are black, unemployed,

in poverty, on disability, on food stamps, or single females

that are the head of their household along the East Gulf

Coastal Plain region (Fig. 5).

In Kansas, there is less clustering among vulnerability

factors than in Alabama. However, slight clustering in

SEDVI metrics does occur near urban centers and in the

southwest portion of the state, where larger percentages of

Hispanic populations reside (Fig. 6). The relatively high

percentage of population that is Hispanic in southwestern

Kansas is driven by food processing and agriculture that

creates employment opportunities for minority pop-

ulations (Kulcsàr 2007). Much of this same southwestern

region of Kansas has percentages of the population with

less than a high school education, that is under 18 years old,

and with a household size greater than four persons. Be-

cause many urban centers in Kansas contain elevated

percentages of populations and households that are in

poverty, rely on public assistance, and/or are unemployed,

SEDVI values tend to be greater on the fringes of these

central business districts. Nevertheless, patterns of socio-

economic and demographic vulnerability metrics within

Kansas are much less apparent than in Alabama.

e. Linking mobile home locations and socioeconomic
and demographic vulnerability

Comparing spatial measures ofMHdensity,MH land-

use settings, and SEDVI-derived vulnerability factors,

MH residents in rural or exurban areas tend to be more

socioeconomically and demographically vulnerable to

tornadoes, especially in the Southeast. Although the

East Gulf Coastal Plains region in Alabama has a lower

TABLE 4. Mean, median, and standard deviation of the percentage of population or households within census block groups for AL and

KS in specific socioeconomic and demographic metrics that relate to elevated tornado hazard vulnerability. The mean, median, standard

deviation, and coefficient of variation for AL and KS block group SEDVI calculations are also presented.

Variable

Mean Median Std dev

Coefficient of

variation

AL KS AL KS AL KS AL KS

Black 31.0 5.9 18.2 1.2 32.4 12.0 1.0 2.0

Hispanic 3.7 11.6 0.9 5.5 7.2 15.7 1.9 1.4

Female 51.7 50.0 51.7 50.4 6.9 6.9 0.1 0.1

,5 years old 5.8 6.7 5.2 6.2 4.1 4.2 0.7 0.6

,18 years old 21.9 24.0 21.9 24.1 8.2 8.4 0.4 0.4

.65 years old 16.5 15.3 15.7 14.5 8.1 8.3 0.5 0.5

Poverty 20.2 14.1 17.0 10.2 15.1 13.1 0.7 0.9

Unemployed 48.6 37.4 48.2 37.1 12.5 11.0 0.3 0.3

Public assistance 1.9 2.1 0.3 0.7 3.4 3.4 1.8 1.6

Food stamps 17.9 10.2 14.8 7.2 14.4 10.7 0.8 1.0

Disability 8.4 4.3 6.5 3.1 8.1 6.2 1.0 1.4

Less than high school education 5.5 4.3 4.2 2.1 5.3 6.3 1.0 1.5

Single female head of household 16.2 10.4 13.5 8.4 11.9 8.5 0.7 0.8

Household size greater than four people 27.8 31.7 27.6 30.6 12.7 14.3 0.5 0.5

Renters 15.6 14.3 14.0 12.9 9.6 8.6 0.6 0.6

SEDVI 24.7 20.9 24.0 19.6 7.1 6.8 0.3 0.3
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MHdensity, the percentage of total housing stock in this

region that is MHs is greater than any other portion of

Alabama. In addition, the East Gulf Coastal Plains re-

gion contains a greater amount of rural land use and a

higher percentage of vulnerable populations that are

black, unemployed, in poverty, on public assistance, or

single female head of households. Although this re-

search cannot determine that a single household is both

socially and physically vulnerable, the juxtaposition of

these measures suggests enhanced social and physical

vulnerability to tornadoes within this region of Alabama

(Fig. 5). This finding not only supports prior work in-

dicating that MHs tend to be located in greater con-

centrations within rural and exurban land (Cutter et al.

2003; Schmidlin et al. 2009; Emrich and Cutter 2011),

but also demonstrates thatMHs, rural/exurban land use,

FIG. 5. SEDVI variables, MH density (km2), and SEDVI values for AL within census block group estimates (cf. Tables 1 and 4).
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and socioeconomic and demographically vulnerable

factors are linked across geographic space at fine spatial

scale in the Southeast. This combination of increased

vulnerability with housing stock that is less wind re-

sistant (i.e., MHs) highlights one of the most tornado-

vulnerable populations in the United States. Thus, some

of the most socioeconomically and demographically

marginalized populations in the United States are also

more susceptible to destruction from tornadoes and

other wind hazards.

As illustrated, there are fewer MHs in Kansas located

in rural areas, compared to Alabama, and MHs tend to

FIG. 6. As in Fig. 5, but for KS.
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be located on the fringe of urban centers in suburban

land use. Kansas SEDVImetrics illustrate thatMHs also

coincide with elevated measures of socioeconomic and

demographic vulnerability. However, SEDVI values in

Kansas are not as concentrated in rural and exurban

areas as in Alabama. Rather, elevated SEDVI measures

are found more commonly in suburban regions where

MHs are also likely to be found. This difference between

Alabama and Kansas land use and SEDVI measures is

explained by the contrasting development patterns in

each state. Because exurban growth and urban sprawl

has been limited in Kansas by zoning practices related to

the preservation of agriculture and pasture lands, pop-

ulations and households that are determined to be at

greater vulnerability are more likely to fall on periph-

eries of the urban core in suburban and exurban land use

(e.g., southeast Garden City, Kansas).

f. Assessment of tornado impacts on MHs using a
Monte Carlo model

POE curves derived from TorMC Monte Carlo sim-

ulations are used to illustrate HU and MH tornado

impact potential for Alabama and Kansas (Fig. 7). MH

impact statistics and probabilities are compared against

those for all housing to reveal differences in tornado

impact potential between housing types.4 Tornado im-

pact statistics and POEs for all HUs in Kansas and

Alabama demonstrate that tornado–HU impact poten-

tial in Alabama is greater than in Kansas. Specifically,

the mean (median) number of HUs affected by torna-

does in a given year inAlabama is 88% (120%) higher in

Alabama (Table 5). Alabama’s 95th and 99th percen-

tiles of annual HU impacts are 60% higher than Kansas.

It is also 68% (150%) more likely for an EF11 tornado

to damage anHU (100HUs) in Alabama than in Kansas

(Table 6). These elevated Alabama central tendency

and percentile tornado–HU impact results are explained

by the larger number of HUs in Alabama, the greater

total tornado damage area (Ashley and Strader 2016),

and a more sprawling suburban, exurban, and relatively

high-density rural land use (Table 2).

The expected mean and median annual tornado im-

pacts on MHs in Alabama are 385% (54 MH per year)

and 1000% (30 MHs per year) higher than in Kansas

(Table 5). Tornado–MH impact 95th- and 99th-percen-

tile values in Alabama are also 305% and 176% higher

in Alabama. The probability that an MH is impacted by

an EF11 tornado is 350% more likely in Alabama

(Table 6). However, the likelihood that 100 or more

MHs are damaged by an EF11 tornado is only 13%

higher inAlabama. This finding illustrates the effect that

more MH clustering in Kansas has on tornado–MH

impact probability, especially for tornado events that

affect many MHs. Because the HU and MH mean im-

pact values for Alabama and Kansas are also vastly

different, the coefficient of variation was calculated for

FIG. 7. Annual AL (solid black line) and KS (dashed black line)

tornado impact POEcurves for (a)HUs and (b)MHsusing a 10 000-yr

EF11 tornado footprint simulation.

TABLE 5. Annual tornado impact statistics for HU and MH by

10 000-yr tornado (EF11) tornado simulations.

Housing type Impact statistics AL KS

HU Median 751 341

Mean 1298 687

Std dev 1806 1119

Coefficient of variation 1.4 1.6

95th percentile 4264 2445

99th percentile 8328 5201

MH Median 33 3

Mean 68 14

Std dev 103 41

Coefficient of variation 2.7 2.9

95th percentile 243 60

99th percentile 513 186

4 PH impacts were not analyzed in this study because of poor

data quality, error correction limitations, and locational accuracy.
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each 10 000-yr simulation to best compare the variability

in annual expected tornado impacts across states and

housing types. Kansas has greater expected annual

tornado impact variabilities for both HUs and MHs.

This finding supports prior research that indicated

tornado impact variability is generally higher across

landscapes that have a more clustered development

pattern (i.e., Strader et al. 2018). However, comparing

the coefficient of variation results for MHs and HUs,

MH impact variability is much greater for both Ala-

bama and Kansas. This suggests that when assessing

the tornado disaster potential of a region, the spatial

clustering of MHs is equally important as the total

number of MHs. Because MHs in Kansas are more

often found in suburbia and rarely found in rural

areas, tornado–MH impacts are much more variable,

compared to Alabama. The greater number of MHs in

exurban and higher-density rural locations in Ala-

bama lowers tornado impact variability while simul-

taneously increasing the mean and median tornado

impact values.

In general, in Alabama and Kansas, tornado impact

probability is controlled by three primary factors: tornado

risk, number of homes exposed to the hazard, and spatial

distribution of exposed homes. As this study and prior

research (e.g., Brooks et al. 2003; Dixon et al. 2011; Ashley

and Strader 2016) has illustrated, tornado risk in Alabama

and Kansas is similar, with Kansas experiencing a greater

number of tornadoes annually and Alabama having

a greater overall tornado footprint (i.e., total area of tor-

nado damage) annually. Taking the second and third tor-

nado impact controls into account, there is a balance, or

tradeoff, between housing density and the pattern of de-

velopment as it relates to tornado impact potential and

magnitude. For example, given a constant total number of

MHs, a more clustered (dispersed or sprawling) develop-

ment pattern will lead to greater (lesser) tornado impact

variability.However, the total number ofMHs inAlabama

andKansas is not equal or constant between the two states;

Alabama contains a far greater number of MHs. In addi-

tion, MHs in Alabama are more often found in exurban

areas compared to suburban in Kansas. AlabamaMHs are

found in both MH communities/parks (clustered) and

isolated areas (dispersed) in exurban and rural areas. The

resulting combination of a greater number of MHs and

a more sprawling spatial pattern leads to tornado impact

probabilities 4.5 times greater in the Southeast than in the

central Plains.

4. Conclusions

Disasters are social constructs that occur when hazards,

such as tornadoes, interact with society and the accom-

panying population’s vulnerabilities (Quarantelli 1992;

Pelling 2003). To understand disaster potential and dif-

ferences in tornado impacts for MH residents in the

Southeast and central Plains, tornado risk and associated

socioeconomic and demographic characteristics must be

considered. By integrating MH locations derived from

land-parcel data and socioeconomic and demographic

variables from census data, finescalemeasures of physical

and social vulnerability to tornadoes were created for

Alabama and Kansas. The combination of these physi-

cal, socioeconomic, and demographic vulnerability mea-

sures provides a more holistic understanding of tornado

impact and disaster potential in the Southeast and central

Plains while also highlighting where the most vulnerable

populations are located. Whereas prior research has

suggested that a primary reason for elevated tornado

mortality rates in the Southeast are vulnerability factors

such as elevated population density, lower income, and

increased minority populations, this study illustrates that

physical and social vulnerability are connected to both

themagnitude of the vulnerability measure and its spatial

distribution across the landscape.

Combining both physical (i.e., MHs) and social (i.e.,

SEDVI measures) vulnerability analyses, Alabama pop-

ulations are altogether much more vulnerable to torna-

does compared to those in Kansas. Yet, when examining

MH density and populations in Alabama that have been

deemedmore socially vulnerable by the SEDVI analyses,

there is an inverse relationship indicating that more iso-

lated MHs (i.e., not located with an MH community or

park) have a tendency to also be more socioeconomically

and demographically vulnerable to tornadoes. Alto-

gether, results from this study not only support prior re-

search that suggests populations in rural areas are more

socially vulnerable to hazards (e.g., Cutter et al. 2003), but

also indicates that many of these populations are dis-

proportionately more physically vulnerable to tornadoes.

Overall, we have illustrated that to understand tornado

impacts andmitigate potential consequences, both physical

and social components of disaster must be considered.

Policymakers, elected officials, and governmental agencies

at local, state, and national scales should employ the

TABLE 6. The probability (prob) that anEF11 tornado damages

an HU or MH in AL or KS. MH–tornado impact probability

thresholds of greater than 1, 100, 500, and 1000 MHs per EF11
tornado event occurrence.

State

Prob .1

home

Prob .100

homes

Prob .500

homes

Prob .1000

homes

HU MH HU MH HU MH HU MH

AL 0.69 0.18 0.10 0.0098 0.03 0.0078 0.0114 0.0053

KS 0.41 0.04 0.04 0.0087 0.01 0.0034 0.0098 ,0.0001
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findings herein and conduct similar analyses to better un-

derstand where the most vulnerable populations are lo-

cated so that hazard impact reduction strategies on the

short- and long-term time scales may be implemented.

Land planners and policy makers should improve and en-

force building codes that increase individual and commu-

nity resilience. For example, MHs located in tornado and

other wind hazard–prone regions should be required to

have concrete foundations, anchor bolts, and hurricane ties

so that they are more resistant to these hazards. Although

there are many known issues with community tornado

shelters (e.g., Schmidlin et al. 2009), areas where there is a

high concentration of the vulnerable housing stock, such as

MH parks, should invest in tornado shelters or safe rooms

to reduce tornado consequences, lower disaster costs, and

potentially save lives (Merrell et al. 2002; Simmons and

Sutter 2007; Prevatt et al. 2012). Last, researchers, policy

makers, engineers, and members of community integrated

warning teams (IWT) should continue to work together to

reduce tornado vulnerability and increase survivability

during tornado events. The methods and results presented

in this study serve to initiate a dialogue among policy

makers, IWTmembers, and the public so that steps can be

taken to reduce the effects of future tornado hazards on

society, especially for those more vulnerable populations.
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